Skip to main content

Long-term fundus fluorescence angiography and real-time diagnosis of retinal diseases in non-human primate-animal models

Abstract

Fluorescein angiography (FA) is a standard imaging modality for evaluating vascular abnormalities in retina-related diseases, which is recognized as the major cause of vision loss. Long-term and real-time fundus angiography is of great importance in preclinical research, nevertheless remaining big challenges up to present. In this study, we demonstrate that long-term fluorescence imaging of retinal vessels is enabled through a kind of fluorescent nanoagents, which is made of small-sized (hydrodynamic diameter: ∼ 3 nm) silicon nanoparticles (SiNPs) featuring strong fluorescence, robust photostability, lengthened blood residency and negligible toxicity. In particular, the presented SiNPs-based nanoagents are capable of imaging retinal capillaries in ∼ 10 min, which is around 10-fold longer than that (∼ 1 min) of fluorescein sodium (FS, known as the most widely used contrast agents for FA in clinic). Taking cynomolgus macaques as non-human primate-animal model, we further demonstrate the feasibility of real-time diagnosis of retinal diseases (e.g., age-related macular degeneration (AMD)) through dynamic monitoring of vascular dysfunction.

References

  1. [1]

    Zhang, K.; Zhang, L. F.; Weinreb, R. N. Ophthalmic drug discovery: Novel targets and mechanisms for retinal diseases and glaucoma. Nat. Rev. Drug. Discov. 2012, 11, 541–559.

    Article  CAS  Google Scholar 

  2. [2]

    Kim, D. Y.; Fingler, J.; Zawadzki, R. J.; Park, S. S.; Morse, L. S.; Schwartz, D. M.; Fraser, S. E.; Werner, J. S. Optical imaging of the chorioretinal vasculature in the living human eye. Proc. Natl. Acad. Sci. USA 2013, 110, 14354–14359.

    Article  Google Scholar 

  3. [3]

    Stanga, P. E.; Lim, J. I.; Hamilton, P. Indocyanine green angiography in chorioretinal diseases: Indications and interpretation: An evidence-based update. Ophthalmology 2003, 110, 15–21.

    Article  Google Scholar 

  4. [4]

    Antonelli, A.; Sfara, C.; Magnani, M. Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Res. 2017, 10, 731–766.

    Article  Google Scholar 

  5. [5]

    Pearlman, J. D.; Laham, R. J.; Post, M.; Leiner, T.; Simons, M. Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis. Curr. Pharm. Des. 2002, 8, 1467–1496.

    Article  CAS  Google Scholar 

  6. [6]

    Huang, J. G.; Li, J. C.; Lyu, Y.; Miao, Q. Q.; Pu, K. Y. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133–1143.

    Article  CAS  Google Scholar 

  7. [7]

    Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H. W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102–1110.

    Article  CAS  Google Scholar 

  8. [8]

    Cursiefen, C.; Chen, L.; Saint-Geniez, M.; Hamrah, P.; Jin, Y. P.; Rashid, S.; Pytowski, B.; Persaud, K.; Wu, Y.; Streilein, J. W. et al. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc. Natl. Acad. Sci. USA 2006, 103, 11405–11410.

    Article  CAS  Google Scholar 

  9. [9]

    Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946.

    Article  CAS  Google Scholar 

  10. [10]

    Takahashi, K.; Muraoka, K.; Kishi, S.; Shimizu, K. Formation of retinochoroidal collaterals in central retinal vein occlusion. Am. J. Ophthalmol. 1998, 126, 91–99.

    Article  CAS  Google Scholar 

  11. [11]

    Wolfensberger, T. J.; Herbort, C. P. Indocyanine green angiographic features in ocular sarcoidosis. Ophthalmology 1999, 106, 285–289.

    Article  CAS  Google Scholar 

  12. [12]

    Aydin, P.; Akova, Y. A.; Kadayifçilar, S. Anterior segment indocyanine green angiography in scleral inflammation. Eye 2000, 14, 211–215.

    Article  Google Scholar 

  13. [13]

    Nicholson, B.; Noble, J.; Forooghian, F.; Meyerle, C. Central serous chorioretinopathy: Update on pathophysiology and treatment. Surv. Ophthalmol. 2013, 58, 103–126.

    Article  Google Scholar 

  14. [14]

    Shinojima, A.; Kawamura, A.; Mori, R.; Yuzawa, M. Morphologic features of focal choroidal excavation on spectral domain optical coherence tomography with simultaneous angiography. Retina 2014, 34, 1407–1414.

    Article  Google Scholar 

  15. [15]

    Yannuzzi, L. A. A perspective on the treatment of aphakic cystoid macular edema. Surv. Ophthalmol. 1984, 28, 540–553.

    Article  Google Scholar 

  16. [16]

    Fardeau, C.; Lee, C. P. L.; Merle-Béral, H.; Cassoux, N.; Bodaghi, B.; Davi, F.; Lehoang, P. Retinal fluorescein, indocyanine green angiography, and optic coherence tomography in non-hodgkin primary intraocular lymphoma. Am. J. Ophthalmol. 2009, 147, 886–894.

    Article  Google Scholar 

  17. [17]

    Antcliff, R. J.; Stanford, M. R.; Chauhan, D. S.; Graham, E. M.; Spalton, D. J.; Shilling, J. S.; Ffytche, T. J.; Marshall, J. Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. Ophthalmology 2000, 107, 593–599.

    Article  CAS  Google Scholar 

  18. [18]

    Spaide, R. F.; Yannuzzi, L. A.; Sisco, L. J. Chronic cystoid macular edema and predictors of visual acuity. Ophthalmic Surg. 1993, 24, 262–267.

    CAS  Google Scholar 

  19. [19]

    Jia, Y. L.; Bailey, S. T.; Hwang, T. S.; McClintic, S. M.; Gao, S. S.; Pennesi, M. E.; Flaxel, C. J.; Lauer, A. K.; Wilson, D. J.; Hornegger, J. et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc. Natl. Acad. Sci. USA 2015, 112, 2395–2402.

    Article  CAS  Google Scholar 

  20. [20]

    Weng, Y. H.; Ma, X. W.; Che, J.; Li, C.; Liu, J.; Chen, S. Z.; Wang, Y. Q.; Gan, Y. L.; Chen, H.; Hu, Z. B. et al. Nanomicelle-assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo. Adv. Sci. 2018, 5, 1700455.

    Article  CAS  Google Scholar 

  21. [21]

    Wang, Y. F.; Liu, C. H.; Ji, T. J.; Mehta, M.; Wang, W. P.; Marino, E.; Chen, J.; Kohane, D. S. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat. Commun. 2019, 10, 804.

    Article  CAS  Google Scholar 

  22. [22]

    Shen, J. K.; Kim, J.; Tzeng, S. Y.; Ding, K.; Hafiz, Z.; Long, D.; Wang, J. X.; Green, J. J.; Campochiaro, P. A. Suprachoroidal gene transfer with nonviral nanoparticles. Sci. Adv. 2020, 6, eaba1606.

    Article  CAS  Google Scholar 

  23. [23]

    Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

    Article  CAS  Google Scholar 

  24. [24]

    Yao, J.; Yang, M.; Duan, Y. X. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178.

    Article  CAS  Google Scholar 

  25. [25]

    Kwon, J.; Jun, S. W.; Choi, S. I.; Mao, X.; Kim, J.; Koh, E. K.; Kim, Y. H.; Kim, S. K.; Hwang, D. Y.; Kim, C. S. et al. FeSe quantum dots for in vivo multiphoton biomedical imaging. Sci. Adv. 2019, 5, eaay0044.

    Article  CAS  Google Scholar 

  26. [26]

    Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086–12090.

    Article  CAS  Google Scholar 

  27. [27]

    Zhou, L.; Wang, R.; Yao, C.; Li, X. M.; Wang, C. L.; Zhang, X. Y.; Xu, C. J.; Zeng, A. J.; Zhao, D. Y.; Zhang, F. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 2015, 6, 6938.

    Article  CAS  Google Scholar 

  28. [28]

    Su, Y. Y.; Ji, X. Y.; He, Y. Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv. Mater. 2016, 28, 10567–10574.

    Article  CAS  Google Scholar 

  29. [29]

    Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S. T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

    Article  CAS  Google Scholar 

  30. [30]

    Zhong, Y. L.; Song, B.; Shen, X. B.; Guo, D. X.; He, Y. Fluorescein sodium ligand-modified silicon nanoparticles produce ultrahigh fluorescence with robust pH- and photo-stability. Chem. Commun. 2019, 55, 365–368.

    Article  CAS  Google Scholar 

  31. [31]

    Cui, M. Y.; Liu, S. M.; Song, B.; Guo, D. X.; Wang, J. H.; Hu, G. Y.; Su, Y. Y.; He, Y. Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy. Nano-Micro Lett. 2019, 11, 73.

    Article  CAS  Google Scholar 

  32. [32]

    Wang, J. H.; Song, B.; Tang, J. L.; Hu, G. Y.; Wang, J. Y.; Cui, M. Y.; He, Y. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 2020, 13, 1614–1619.

    Article  CAS  Google Scholar 

  33. [33]

    Guo, D. X.; Ji, X. Y.; Peng, F.; Zhong, Y. L.; Chu, B. B.; Su, Y. Y.; He, Y. Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of siRNA and doxorubicin to drug-resistant cancer cells. Nano-Micro Lett. 2019, 11, 27.

    Article  CAS  Google Scholar 

  34. [34]

    Ji, X. Y.; Guo, D. X.; Song, B.; Wu, S. C.; Chu, B. B.; Su, Y. Y.; He, Y. Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparticles. Nano Res. 2018, 11, 5629–5641.

    Article  CAS  Google Scholar 

  35. [35]

    Zhai, X.; Song, B.; Chu, B. B.; Su, Y. Y.; Wang, H. Y.; He, Y. Highly fluorescent, photostable, and biocompatible silicon theranostic nanoprobes against Staphylococcus aureus infections. Nano Res. 2018, 11, 6417–6427.

    Article  CAS  Google Scholar 

  36. [36]

    Tang, M. M.; Ji, X. Y.; Xu, H.; Zhang, L.; Jiang, A. R.; Song, B.; Su, Y. Y.; He, Y. Photostable and biocompatible fluorescent silicon nanoparticles-based theranostic probes for simultaneous imaging and treatment of ocular neovascularization. Anal. Chem. 2018, 90, 8188–8195.

    Article  CAS  Google Scholar 

  37. [37]

    Zhang, L.; Ji, X. Y.; Su, Y. Y.; Zhai, X.; Xu, H.; Song, B.; Jiang, A. R.; Guo, D. X.; He, Y. Fluorescent silicon nanoparticles-based nanotheranostic agents for rapid diagnosis and treatment of bacteria-induced keratitis. Nano Res. 2020, 14, 52–58.

    Article  CAS  Google Scholar 

  38. [38]

    Lambert, V.; Lecomte, J.; Hansen, S.; Blacher, S.; Gonzalez, M. L. A.; Struman, I.; Sounni, N. E.; Rozet, E.; de Tullio, P.; Foidart, J. M. et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 2013, 5, 2197–2211.

    Article  CAS  Google Scholar 

  39. [39]

    Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem., Int. Ed. 2009, 45, 7668–7672.

    Article  CAS  Google Scholar 

  40. [40]

    Laginha, K. M.; Verwoert, S.; Charrois, G. J. R.; Allen, T. M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer. Res. 2005, 11, 6944–6949.

    Article  CAS  Google Scholar 

  41. [41]

    Nakayama-Ratchford, N.; Bangsaruntip, S.; Sun, X. M.; Welsher, K.; Dai, H. J. Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: Supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 2007, 129, 2448–2449.

    Article  CAS  Google Scholar 

  42. [42]

    Park, J.; Hammond, P. T. Multilayer transfer printing for polyelectrolyte multilayer patterning: Direct transfer of layer-by-layer assembled micropatterned thin films. Adv. Mater. 2004, 16, 520–525.

    Article  CAS  Google Scholar 

  43. [43]

    Luo, L.; Zhang, X. H.; Hirano, Y.; Tyagi, P.; Barabas, P.; Uehara, H.; Miya, T. R.; Singh, N.; Archer, B.; Qazi, Y. et al. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano 2013, 7, 3264–3275.

    Article  CAS  Google Scholar 

  44. [44]

    Haarhaus, M.; Brandenburg, V.; Kalantar-Zadeh, K.; Stenvinkel, P.; Magnusson, P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 2017, 13, 429–442.

    Article  CAS  Google Scholar 

  45. [45]

    Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. In vivo quantum-dot toxicity assessment. Small 2010, 6, 138–144.

    Article  CAS  Google Scholar 

  46. [46]

    Yong, K. T.; Law, W. C.; Hu, R.; Ye, L.; Liu, L. W.; Swihart, M. T.; Prasad, P. N. Nanotoxicity assessment of quantum dots: From cellular to primate studies. Chem. Soc. Rev. 2013, 42, 1236–1250.

    Article  CAS  Google Scholar 

  47. [47]

    Ghosh, J. G.; Nguyen, A. A.; Bigelow, C. E.; Poor, S.; Qiu, Y. B.; Rangaswamy, N.; Ornberg, R.; Jackson, B.; Mak, H.; Ezell, T. et al. Long-acting protein drugs for the treatment of ocular diseases. Nat. Commun. 2017, 8, 14837.

    Article  CAS  Google Scholar 

  48. [48]

    Kulkarni, A. D.; Kuppermann, B. D. Wet age-related macular degeneration. Adv. Drug. Deliv. Rev. 2005, 57, 1994–2009.

    Article  CAS  Google Scholar 

  49. [49]

    Goody, R. J.; Hu, W. Z.; Shafiee, A.; Struharik, M.; Bartels, S.; López, F. J.; Lawrence, M. S. Optimization of laser-induced choroidal neovascularization in African green monkeys. Exp. Eye Res. 2011, 92, 464–472.

    Article  CAS  Google Scholar 

  50. [50]

    Sidman, R. L.; Li, J. X.; Lawrence, M.; Hu, W. Z.; Musso, G. F.; Giordano, R. J.; Cardó-Vila, M.; Pasqualini, R.; Arap, W. The peptidomimetic Vasotide targets two retinal VEGF receptors and reduces pathological angiogenesis in murine and nonhuman primate models of retinal disease. Sci. Transl. Med. 2015, 7, 309ra165.

    Article  CAS  Google Scholar 

  51. [51]

    Ye, L.; Yong, K. T.; Liu, L. W.; Roy, I.; Hu, R.; Zhu, J.; Cai, H. X.; Law, W. C.; Liu, J. W.; Wang, K. et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol. 2012, 7, 453–458.

    Article  CAS  Google Scholar 

  52. [52]

    Chen, F.; Madajewski, B.; Ma, K.; Zanoni, D. K.; Stambuk, H.; Turker, M. Z.; Monette, S.; Zhang, L.; Yoo, B.; Chen, P. M. et al. Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci. Adv. 2019, 5, eaax5208.

    Article  CAS  Google Scholar 

  53. [53]

    Munson, M. C.; Plewman, D. L.; Baumer, K. M.; Henning, R.; Zahler, C. T.; Kietzman, A. T.; Beard, A. A.; Mukai, S.; Diller, L.; Hamerly, G. et al. Autonomous early detection of eye disease in childhood photographs. Sci. Adv. 2019, 5, eaax6363.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate financial support from National Natural Science Foundation of China (Nos. 21825402, 31400860, 21575096, and 21605109), Natural Science Foundation of Jiangsu Province of China (Nos. BK20191417 and BK20170061) and the Program for Jiangsu Specially-Appointed Professors to Prof. Yao He, a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yao He.

Electronic Supplementary Material

12274_2021_3302_MOESM1_ESM.pdf

Long-term fundus fluorescence angiography and real-time diagnosis of retinal diseases in non-human primate-animal models

Supplementary material, approximately 6.51 MB.

Supplementary material, approximately 9.13 MB.

Supplementary material, approximately 9.00 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Zhang, L., Song, B. et al. Long-term fundus fluorescence angiography and real-time diagnosis of retinal diseases in non-human primate-animal models. Nano Res. 14, 3840–3847 (2021). https://doi.org/10.1007/s12274-021-3302-6

Download citation

Keywords

  • fluorescent silicon nanoparticles
  • long-term
  • real-time
  • bioimaging
  • retinal diseases