Skip to main content

Non-invasive delivery of levodopa-loaded nanoparticles to the brain via lymphatic vasculature to enhance treatment of Parkinson’s disease

Abstract

Levodopa (L-DOPA), a precursor of dopamine, is commonly prescribed for the treatment of the Parkinson’s disease (PD). However, oral administration of levodopa results in a high level of homocysteine in the peripheral circulation, thereby elevating the risk of cardiovascular disease, and limiting its clinical application. Here, we report a non-invasive method to deliver levodopa to the brain by delivering L-DOPA-loaded sub-50 nm nanoparticles via brain-lymphatic vasculature. The hydrophilic L-DOPA was successfully encapsulated into nanoparticles of tannic acid (TA)/polyvinyl alcohol (PVA) via hydrogen bonding using the flash nanocomplexation (FNC) process, resulting in a high L-DOPA-loading capacity and uniform size in a scalable manner. Pharmacodynamics analysis in a PD rat model demonstrated that the levels of dopamine and tyrosine hydroxylase, which indicate the dopaminergic neuron functions, were increased by 2- and 4-fold, respectively. Movement disorders and cerebral oxidative stress of the rats were significantly improved. This formulation exhibited a high degree of biocompatibility as evidenced by lack of induced inflammation or other pathological changes in major organs. This antioxidative and drug-delivery platform administered through the brain-lymphatic vasculature shows promise for clinical treatment of the PD.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Calabresi, P.; Di Filippo, M.; Ghiglieri, V.; Tambasco, N.; Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: Filling the bench-to-bedside gap. Lancet Neurol. 2010, 9, 1106–1117.

    CAS  Article  Google Scholar 

  2. [2]

    Poewe, W.; Antonini, A.; Zijlmans, J. C.; Burkhard, P. R.; Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong. Clin. Interv. Aging 2010, 5, 229–238.

    CAS  Google Scholar 

  3. [3]

    Smith, Y.; Wichmann, T.; Factor, S. A.; DeLong, M. R. Parkinson’s disease therapeutics: New developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012, 37, 213–246.

    CAS  Article  Google Scholar 

  4. [4]

    Müller, T.; Muhlack, S. Acute Homocysteine rise after repeated levodopa application in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2010, 16, 688–689.

    Article  Google Scholar 

  5. [5]

    Günaydın, Z. Y.; Özer, F. F.; Karagöz, A.; Bektaş, O.; Karataş, M. B.; Vural, A.; Bayramoğlu, A.; Çelik, A.; Yaman, M. Evaluation of cardiovascular risk in patients with Parkinson disease under levodopa treatment. J. Geriatr. Cardiol. 2016, 13, 75–80.

    Google Scholar 

  6. [6]

    Contin, M.; Martinelli, P. Pharmacokinetics of levodopa. J. Neurol. 2010, 257, S253–S261.

    Article  CAS  Google Scholar 

  7. [7]

    LeWitt, P. A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord. 2015, 30, 64–72.

    CAS  Article  Google Scholar 

  8. [8]

    Tolosa, E.; Hernández, B.; Linazasoro, G.; López-Lozano, J. J.; Mir, P.; Marey, J.; Kulisevsky, J. Efficacy of levodopa/crbidopa/entacapone versus levodopa/carbidopa in patients with early Parkinson’s disease experiencing mild wearing-off: A randomised, double-blind trial. J. Neural Transm. 2014, 121, 357–366.

    CAS  Article  Google Scholar 

  9. [9]

    Liu, L. H.; Guo, K.; Lu, J.; Venkatraman, S. S.; Luo, D.; Ng, K. C.; Ling, E. A.; Moochhala, S.; Yang, Y. Y. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 2008, 29, 1509–1517.

    CAS  Article  Google Scholar 

  10. [10]

    Qin, Y.; Chen, H. L.; Yuan, W. M.; Kuai, R.; Zhang, Q. Y.; Xie, F. L.; Zhang, L.; Zhang, Z. R.; Liu, J.; He, Q. Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int. J. Pharm. 2011, 419, 85–95.

    CAS  Article  Google Scholar 

  11. [11]

    van Rooy, I.; Mastrobattista, E.; Storm, G.; Hennink, W. E.; Schiffelers, R. M. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J. Control. Release 2011, 150, 30–36.

    CAS  Article  Google Scholar 

  12. [12]

    Da Mesquita, S.; Fu, Z. X.; Kipnis, J. The meningeal lymphatic system: A new player in neurophysiology. Neuron 2018, 100, 375–388.

    CAS  Article  Google Scholar 

  13. [13]

    Louveau, A.; Smirnov, I.; Keyes, T. J.; Eccles, J. D.; Rouhani, S. J.; Peske, J. D.; Derecki, N. C.; Castle, D.; Mandell, J. W.; Lee, K. S. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337–341.

    CAS  Article  Google Scholar 

  14. [14]

    Zhao, P. F.; Le, Z. C.; Liu, L. X.; Chen, Y. M. Therapeutic delivery to the brain via the lymphatic vasculature. Nano Lett. 2020, 20, 5415–5420.

    CAS  Article  Google Scholar 

  15. [15]

    Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R. K.; Bhatnagar, P.; Chauhan, L. K. S.; Saxena, P. N.; Arun, J.; Chaudhari, B. P.; Patel, D. K. et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015, 9, 4850–4871.

    CAS  Article  Google Scholar 

  16. [16]

    Xiang, Y.; Wu, Q.; Liang, L.; Wang, X. Q.; Wang, J. C.; Zhang, X.; Pu, X. P.; Zhang, Q. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against the Parkinson’s disease in the MPTP-induced mice model. J. Drug Target. 2012, 20, 67–75.

    Article  CAS  Google Scholar 

  17. [17]

    Ngwuluka, N. C.; Choonara, Y. E.; Kumar, P.; du Toit, L. C.; Modi, G.; Pillay, V. An optimized gastroretentive nanosystem for the delivery of levodopa. Int. J. Pharm. 2015, 494, 49–65.

    CAS  Article  Google Scholar 

  18. [18]

    Huang, X. F.; Jia, J. W.; Wang, Z. K.; Hu, Q. L. A novel chitosan-based sponge coated with self-assembled thrombin/tannic acid multilayer films as a hemostatic dressing. Chin. J. Polym. Sci. 2015, 33, 284–290.

    CAS  Article  Google Scholar 

  19. [19]

    Wang, X. Q.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D. L. Silk nanospheres and microspheres from silk/PVA blend films for drug delivery. Biomaterials 2010, 31, 1025–1035.

    CAS  Article  Google Scholar 

  20. [20]

    Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387.

    CAS  Article  Google Scholar 

  21. [21]

    He, Z. Y.; Hu, Y. Z.; Gui, Z. Z.; Zhou, Y.; Nie, T. Q.; Zhu, J. C.; Liu, Z. J.; Chen, K. T.; Liu, L. X.; Leong, K. W. et al. Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes. J. Control. Release 2019, 301, 119–128.

    CAS  Article  Google Scholar 

  22. [22]

    He, Z. Y.; Nie, T. Q.; Hu, Y. Z.; Zhou, Y.; Zhu, J. C.; Liu, Z. J.; Liu, L. X.; Leong, K. W.; Chen, Y. M.; Mao, H. Q. A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. J. Control. Release 2020, 318, 86–97.

    CAS  Article  Google Scholar 

  23. [23]

    Liu, H.; Chen, H. L.; Liu, Z. J.; Le, Z. C.; Nie, T. Q.; Qiao, D. D.; Su, Y.; Mai, H. Q.; Chen, Y. M.; Liu, L. X. Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials 2020, 255, 120158.

    CAS  Article  Google Scholar 

  24. [24]

    Le, Z. C.; Chen, Y. T.; Han, H. H.; Tian, H. K.; Zhao, P. F.; Yang, C. B.; He, Z. Y.; Liu, L. X.; Leong, K. W.; Mao, H. Q. et al. Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 42186–42197.

    CAS  Article  Google Scholar 

  25. [25]

    Ke, X. Y.; Tang, H. Y.; Mao, H. Q. Effective encapsulation of curcumin in nanoparticles enabled by hydrogen bonding using flash nanocomplexation. Int. J. Pharm. 2019, 564, 273–280.

    CAS  Article  Google Scholar 

  26. [26]

    Chow, S. F.; Sun, C. C.; Chow, A. H. L. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production. Eur. J. Pharm. Biopharm. 2014, 88, 462–471.

    CAS  Article  Google Scholar 

  27. [27]

    Zhu, Z. X. Flash nanoprecipitation: Prediction and enhancement of particle stability via drug structure. Mol. Pharmaceutics 2014, 11, 776–786.

    CAS  Article  Google Scholar 

  28. [28]

    Hennig, J.; Friedburg, H. Clinical applications and methodological developments of the rare technique. Magn. Reson. Imaging 1988, 6, 391–395.

    CAS  Article  Google Scholar 

  29. [29]

    Hennig, J.; Nauerth, A.; Friedburg, H. RARE imaging: A fast imaging method for clinical MR. Magn. Reson. Med. 1986, 3, 823–833.

    CAS  Article  Google Scholar 

  30. [30]

    Zhu, Y. Z.; Zhang, J.; Zeng, Y. J. Overview of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol. Disord.: Drug Targets 2012, 11, 350–358.

    CAS  Article  Google Scholar 

  31. [31]

    Nie, T. Q.; He, Z. Y.; Zhou, Y.; Zhu, J. C.; Chen, K. T.; Liu, L. X.; Leong, K. W.; Mao, H. Q.; Chen, Y. M. Surface coating approach to overcome mucosal entrapment of DNA nanoparticles for oral gene delivery of glucagon-like peptide. ACS Appl. Mater. Interfaces 2019, 11, 29593–29603.

    CAS  Article  Google Scholar 

  32. [32]

    Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

    CAS  Article  Google Scholar 

  33. [33]

    Dulińska-Litewka, J.; Łazarczyk, A.; Halubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials 2019, 12, 617.

    Article  CAS  Google Scholar 

  34. [34]

    Kulkarni, S. A.; Feng, S. S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res. 2013, 30, 2512–2522.

    CAS  Article  Google Scholar 

  35. [35]

    Nie, T. Q.; He, Z. Y.; Zhu, J. C.; Liu, L. X.; Chen, Y. M. One-pot synthesis of PEGylated lipoplexes to facilitate mucosal permeation for oral insulin gene delivery. Adv. Ther. 2020, 3, 2000016.

    Article  Google Scholar 

  36. [36]

    Puspita, L.; Chung, S. Y.; Shim, J. W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain 2017, 10, 53.

    Article  CAS  Google Scholar 

  37. [37]

    Halliday, G. M.; McCann, H. The progression of pathology in Parkinson’s disease. Ann. N. Y. Acad. Sci. 2010, 1184, 188–195.

    Article  Google Scholar 

  38. [38]

    Freyssin, A.; Page, G.; Fauconneau, B.; Bilan, A. R. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regener. Res. 2018, 13, 955–961.

    Article  Google Scholar 

  39. [39]

    Caruana, M.; Högen, T.; Levin, J.; Hillmer, A.; Giese, A.; Vassallo, N. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett. 2011, 585, 1113–1120.

    CAS  Article  Google Scholar 

  40. [40]

    Vaillancourt, D. E.; Spraker, M. B.; Prodoehl, J.; Abraham, I.; Corcos, D. M.; Zhou, X. J.; Comella, C. L.; Little, D. M. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009, 72, 1378–1384.

    CAS  Article  Google Scholar 

  41. [41]

    Aarsland, D.; Marsh, L.; Schrag, A. Neuropsychiatric symptoms in Parkinson’s disease. Mov. Disord. 2009, 24, 2175–2186.

    Article  Google Scholar 

  42. [42]

    Beach, T. G.; Adler, C. H.; Sue, L. I.; Peirce, J. B.; Bachalakuri, J.; Dalsing-Hernandez, J. E.; Lue, L. F.; Caviness, J. N.; Connor, D. J.; Sabbagh, M. N. et al. Reduced striatal tyrosine hydroxylase in incidental lewy body disease. Acta Neuropathol. 2008, 115, 445–451.

    CAS  Article  Google Scholar 

  43. [43]

    Paul, J.; Nandhu, M. S.; Kuruvilla, K. P.; Paulose, C. S. Dopamine D1 and D2 receptor subtypes functional regulation in corpus striatum of unilateral rotenone lesioned Parkinson’s rat model: Effect of serotonin, dopamine and norepinephrine. Neurol. Res. 2010, 32, 918–924.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Natural Science Foundation of China (No. 51533009), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2013S086) and the key Area Research and Development of Guangzhou (No. 202007020006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhiyu He, Hai-Quan Mao or Yongming Chen.

Additional information

Conflict of interests

The authors declare no conflict of interests.

Electronic Supplementary Material

12274_2020_3280_MOESM1_ESM.pdf

Non-invasive delivery of levodopa-loaded nanoparticles to the brain via lymphatic vasculature to enhance treatment of Parkinson’s disease

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nie, T., He, Z., Zhu, J. et al. Non-invasive delivery of levodopa-loaded nanoparticles to the brain via lymphatic vasculature to enhance treatment of Parkinson’s disease. Nano Res. 14, 2749–2761 (2021). https://doi.org/10.1007/s12274-020-3280-0

Download citation

Keywords

  • levodopa
  • brain delivery
  • cerebral lymphatic vasculature
  • Parkinson’s disease