Skip to main content

Synthesis of graphene quantum dots for their supramolecular polymorphic architectures


How to regulate the supramolecular structures in the assembly of graphene quantum dots (GQDs) is still a great challenge to be overcome. Herein, the GQDs of 1–3 layers with high quality are synthesized from the new precursor m-trihydroxybenzene in a green method. More importantly, a strategy for designing the supramolecular structures of GQDs is demonstrated, and the novel supramolecular morphologies of GQDs have been constructed for the first time. Moreover, the supramolecular morphologies of GQDs can be well controlled by regulating the preparation conditions, and the formation mechanism of the branch-like supramolecular structure has been explained by the the diffusion-limited aggregation (DLA) model. This work not only develops a new precoursor to synthesize GQDs, but also opens up an effective route to form the polymorphic supermolecules, thus greatly facilitating their potential applications.

This is a preview of subscription content, access via your institution.


  1. Brotchie, A. Graphene quantum dots: It’s all in the twist. Nat. Rev. Mater. 2016, 1, 16006.

    Article  Google Scholar 

  2. Xin, Q.; Jia, X. R.; Nawaz, A.; Xie, W. J.; Li, L. T.; Gong, J. R. Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots. Nano Res. 2020, 13, 1427–1433.

    CAS  Article  Google Scholar 

  3. Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.

    CAS  Article  Google Scholar 

  4. Chen, W. Q.; Xiao, P. S.; Chen, H. H.; Zhang, H. T.; Zhang, Q. C.; Chen, Y. S. Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network. Adv. Mater. 2019, 31, 1802403.

    Article  Google Scholar 

  5. Fang, Y.; Lv, Y. Y.; Tang, J.; Wu, H.; Jia, D. S.; Feng, D.; Kong, B.; Wang, Y. C.; Elzatahry, A. A.; Al-Dahyan, D. et al. Growth of single-layered two-dimensional mesoporous polymer/carbon films by self-assembly of monomicelles at the interfaces of various substrates. Angew. Chem., Int. Ed. 2015, 54, 8425–8429.

    CAS  Article  Google Scholar 

  6. Wang, Z. J.; Wu, S. X.; Zhang, J.; Chen, P.; Yang, G. C.; Zhou, X. Z.; Zhang, Q. C.; Yan, Q. Y.; Zhang, H. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. Nanoscale Res. Lett. 2012, 7, 161.

    Article  Google Scholar 

  7. Liu, R.; Yang, R.; Qu, C. J.; Mao, H. C.; Hu, Y.; Li, J. J.; Qu, L. B. Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum. Sens. Actuat. B: Chem. 2017, 241, 644–651.

    CAS  Article  Google Scholar 

  8. Zhu, S. J.; Song, Y. B.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10–14.

    CAS  Article  Google Scholar 

  9. Chen, W. F.; Lv, G.; Hu, W. M.; Li, D. J.; Chen, S. N.; Dai, Z. X. Synthesis and applications of graphene quantum dots: A review. Nanotechnol. Rev. 2018, 7, 157–185.

    Article  Google Scholar 

  10. Kim, D.; Yoo, J. M.; Hwang, H.; Lee, J.; Lee, S. H.; Yun, S. P.; Park, M. J.; Lee, M. J.; Choi, S.; Kwon, S. H. et al. Graphene quantum dots prevent a-synucleinopathy in Parkinson’s disease. Nat. Nanotechnol. 2018, 13, 812–818.

    CAS  Article  Google Scholar 

  11. Li, X. M.; Rui, M. C.; Song, J. Z.; Shen, Z. H.; Zeng, H. B. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929–4947.

    CAS  Article  Google Scholar 

  12. Chen, W. F.; Shen, J. L.; Lv, G.; Li, D. J.; Hu, Y. L.; Zhou, C. L.; Liu, X.; Dai, Z. X. Green synthesis of graphene quantum dots from cotton cellulose. ChemistrySelect 2019, 4, 2898–2902.

    CAS  Article  Google Scholar 

  13. Hassanzadeh, S.; Adolfsson, K. H.; Hakkarainen, M. Controlling the cooperative self-assembly of graphene oxide quantum dots in aqueous solutions. RSC Adv. 2015, 5, 57425–57432.

    CAS  Article  Google Scholar 

  14. Lin, Y. Y.; Chapman, R.; Stevens, M. M. Integrative self-assembly of graphene quantum dots and biopolymers into a versatile biosensing toolkit. Adv. Funct. Mater. 2015, 25, 3183–3192.

    Article  Google Scholar 

  15. Uemura, Y.; Yamato, K.; Sekiya, R.; Haino, T. A supramolecular polymer network of graphene quantum dots. Angew. Chem. 2018, 130, 5054–5058.

    Article  Google Scholar 

  16. Kim, S.; Song, Y.; Heller, M. J. Polymorphic architectures of graphene quantum dots. Adv. Mater. 2017, 29, 1701845.

    Article  Google Scholar 

  17. Chen, W. F.; Li, D. J.; Tian, Li.; Xiang, W.; Wang, T. Y.; Hu, W. M.; Hu, Y. L.; Chen, S. N.; Chen, J. F.; Dai, Z. X. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green. Chem. 2018, 20, 4438–4442.

    CAS  Article  Google Scholar 

  18. Mei, Q. S.; Chen, J.; Zhao, J.; Yang, L.; Liu, B. H.; Liu, R. Y.; Zhang, Z. P. Atomic oxygen tailored graphene oxide nanosheets emissions for multicolor cellular imaging. ACS Appl. Mater. Interfaces 2016, 8, 7390–7395.

    CAS  Article  Google Scholar 

  19. Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li, X. M.; Teng, K. S.; Lu, C. M.; Zeng, S. J.; Hao, J. H. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110.

    CAS  Article  Google Scholar 

  20. Xu, Y. X.; Shi, G. Q. Assembly of chemically modified graphene: Methods and applications. J. Mater. Chem. 2011, 21, 3311–3323.

    CAS  Article  Google Scholar 

  21. Stanley, H. E.; Ostrowsky, N. On Growth and Form: Fractal and Non-Fractal Patterns in Physics; Martinus Nijhoff: Boston, 1985.

    Book  Google Scholar 

  22. Daccord, G.; Nittmann, J.; Stanley, H. E. Radial viscous fingers and diffusion-limited aggregation: Fractal dimension and growth sites. Phys. Rev. Lett. 1986, 56, 336–339.

    CAS  Article  Google Scholar 

  23. Koneripalli, N.; Bates, F. S.; Fredrickson, G. H. Fractal hole growth in strained block copolymer films. Phys. Rev. Lett. 1998, 81, 1861–1864.

    CAS  Article  Google Scholar 

  24. Meakint, P.; Majid, I.; Havlin, S.; Stanley, H. E. Topological properties of diffusion limited aggregation and cluster-cluster aggregation. J. Phys. A: Math. Gen. 1984, 17, L975–L981.

    Article  Google Scholar 

  25. Zhang, J. L.; Kim, S. K.; Sun, X. D.; Lee, H. Ramified fractal-patterns formed by droplet evaporation of a solution containing single-walled carbon nanotubes. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 292, 148–152.

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the supports for the work from the National Natural Science Foundation of China (No. 21805166), the 111 Project of Hubei Province (No. D20015), and Foundation of Science and Technology Bureau of Yichang City (No. A18-302-a07).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Xiang Liu or Zhongxu Dai.

Additional information


The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Lv, G., Zhou, Q. et al. Synthesis of graphene quantum dots for their supramolecular polymorphic architectures. Nano Res. 14, 1228–1231 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • graphene quantum dots
  • supermolecule
  • m-trihydroxybenzene
  • synthesis
  • the diffusion-limited aggregation