Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Nano Research
  3. Article
Reticular chemistry at the atomic, molecular, and framework scales
Download PDF
Download PDF
  • Editorial
  • Published: 28 November 2020

Reticular chemistry at the atomic, molecular, and framework scales

  • Yue-Biao Zhang1,
  • Qiaowei Li2 &
  • Hexiang Deng3 

Nano Research volume 14, pages 335–337 (2021)Cite this article

  • 975 Accesses

  • 5 Citations

  • 5 Altmetric

  • Metrics details

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. 1960, 23, 22–36.

    Google Scholar 

  2. Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Introduction to reticular chemistry: Metal-organic frameworks and covalent organic frameworks; Wiley-VCH, Weinheim, 2019; pp 1–509.

    Book  Google Scholar 

  3. Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature., 1995, 378, 703–706.

    Article  CAS  Google Scholar 

  4. Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. Stablishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc., 1998, 120, 8571–8572.

    Article  CAS  Google Scholar 

  5. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature., 1999, 402, 276–279.

    Article  CAS  Google Scholar 

  6. Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.-B.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature.,., 2004, 427, 523–527.

    Article  CAS  Google Scholar 

  7. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J. et al. Ultra-high porosity in metal-organic frameworks. Science.,., 2010, 239, 424–428.

    Article  CAS  Google Scholar 

  8. Chen, B.; Eddaoudi, M.; Hyde, S. T.; O'Keeffe, M.; Yaghi, O. M. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science.,., 2001, 291, 1021–1023.

    Article  CAS  Google Scholar 

  9. Deng, H.; Grunder, S; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science.,., 2012, 336, 1018–1023.

    Article  CAS  Google Scholar 

  10. Eddaoudi, M.; Kim, J.; Rosi, N. L.; Vodak, D. T.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular metal-organic frameworks and application in methane storage. Science.,., 2002, 295, 469–472.

    Article  CAS  Google Scholar 

  11. Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organic frameworks. Science.,., 2010, 327, 846–850.

    Article  CAS  Google Scholar 

  12. Li, Q.; Zhang, W.; Miljanic, O. Š.; Sue, C.-H.; Zhao, Y.-L.; Liu, L.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Docking in metal-organic frameworks. Science.,., 2009, 325, 855–859.

    Article  CAS  Google Scholar 

  13. Lee, S.; Kapustin, E.; Yaghi, O. M. Coordinative alignment of molecules in chiral metal-organic frameworks. Science., 2016, 353, 808–811.

    Article  CAS  Google Scholar 

  14. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.., 2010, 43, 58–67.

    Article  CAS  Google Scholar 

  15. Wang, B.; Côté, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature., 2008, 453,., 207–211.

    Article  CAS  Google Scholar 

  16. Yang, J.; Zhang, Y.; Liu, Q.; Trickett, C. A.; Gutierrez-Puebla, E.; Monge, M. Á.; Cong, H.; Aldossary, A.; Deng, H.; Yaghi, O. M. Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J. Am. Chem. Soc.., 2017, 139, 6448–6455.

    Article  CAS  Google Scholar 

  17. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science., 2005, 310, 1166–1170.

    Article  CAS  Google Scholar 

  18. El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M.; Designed synthesis of 3D covalent organic frameworks. Science., 2007, 316, 268–272.

    Article  CAS  Google Scholar 

  19. Gropp, C.; Ma, T.; Hanikel, N.; Yaghi, O. M. Design of higher valency in covalent organic frameworks. Science., 2020, 370, eabd6406.

    Article  CAS  Google Scholar 

  20. Zhang, Y.-B.; Su, J.; Furukawa, H.; Yun, Y.; Gándara, F.; Duong, A.; Zou, X.; Yaghi, O. M. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc.., 2013, 135, 16336–16339.

    Article  CAS  Google Scholar 

  21. Ma, T.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L.; Wang, Y.; Su, J.; Li, J. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science., 2018, 361, 48–52.

    Article  CAS  Google Scholar 

  22. Liu, Y.; Ma, Y.; Zhao, Y.; Sun, X.; Gándara, F.; Furukawa, H.; Liu, Z.; Zhu, H.; Zhu, C.; Suenaga, K. et al. Weaving of organic threads into a crystalline covalent organic framework. Science., 2016, 351, 365–369.

    Article  CAS  Google Scholar 

  23. Xu, W.; Tu, B.; Shu, Y.; Liang, C.-C.; Diercks, C. S.; Yaghi, O. M.; Zhang, Y.-B.; Deng, H.; Li, Q. Anisotropic reticular chemistry. Nat. Rev. Mater.., 2020, 5, 764–779.

    Article  CAS  Google Scholar 

  24. Ji, Z.; Li, T.; Yaghi, O. M.; Sequencing of metals in multivariate metal-organic frameworks. Science., 2020, 369, 674–680.

    Article  CAS  Google Scholar 

  25. Meng, Z.; Mirica, K. A. Two-dimensional d-p conjugated metal- organic framework based on hexahydroxytrinaphthylene. Nano Res.., 2021, 14, 369–375.

    Google Scholar 

  26. Chen, Z.-J.; Li, P.-H.; Zhang, X.; Mian, M. R.; Wang, X.-J.; Li, P.; Liu, Z.-C.; O'Keeffe, M.; Stoddart, J. F.; Farha, O. K. Reticular exploration of uranium-based metal-organic frameworks with hexacarboxylate building units. Nano Res.., 2021, 14, 376–380.

    Google Scholar 

  27. Ma, D.-L.; Qian, C.; Qi, Q.-Y.; Zhong, Z.-R.; Jiang, G.-F.; Zhao, X. Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Res.., 2021, 14, 381–386.

    Google Scholar 

  28. Lin, Q.-J.; Ye, Y.-X.; Liu, L.-Z.; Yao, Z.-Z.; Li, Z.-Y.; Wang, L.-H.; Liu, C.-L.; Zhang, Z.-J.; Xiang, S.-C. High proton conductivity in metalloring-cluster based metalorganic nanotubes. Nano Res.., 2021, 14, 387–391.

    Google Scholar 

  29. Kim, J.; Nam, D.; Kitagawa, H.; Lim, D.-W.; Choe, W. Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Res.., 2021, 14, 392–397.

    Google Scholar 

  30. Wang, Z.; Zhou, L.-P.; Cai, L.-X.; Tian, C.-B.; Sun, Q.-F. From a mononuclear FeL2 complex to a Fe4L4 molecular square: Designed assembly and spin-crossover property. Nano Res.., 2021, 14, 398–403.

    Google Scholar 

  31. Asgari, M.; Kochetygov, I.; Abedini, H.; Queen, W. L. Large anisotropic negative thermal expansion in Cu-TDPAT metalorganic framework: A combined in situ X-ray diffraction and DRIFTS study. Nano Res.., 2021, 14, 404–410.

    Google Scholar 

  32. Kim, J.; Ha, J.; Lee, J. H.; Moon, H. R. Solid-state phase transformations toward a metal-organic framework of 7-connected Zn4O secondary building units. Nano Res.., 2021, 14, 411–416.

    Google Scholar 

  33. Stirk, A. J.; Wilson, B. H.; O'Keefe, C. A.; Amarne, H.; Zhu, K.; Schurko, R. W.; Loeb, S. J. Applying reticular synthesis to the design of Cu-based MOFs with mechanically interlocked linkers. Nano Res.., 2021, 14, 417–422.

    Google Scholar 

  34. Martin, C. R.; Kittikhunnatham, P.; Leith, G. A.; Berseneva, A. A.; Park, K. C.; Greytak, A. B.; Shustova, N. B. Let the light be a guide: Chromophore communication in metalorganic frameworks. Nano Res.., 2021, 14, 338–354.

    Google Scholar 

  35. Haldar, R.; Wöll, C. Hierarchical assemblies of molecular frameworks-MOF-on-MOF epitaxial heterostructures. Nano Res.., 2021, 14, 355–368.

    Google Scholar 

  36. Issa, R.; Ibrahim, F. A.; Al-Ghoul, M.; Hmadeh, M. Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process. Nano Res.., 2021, 14, 423–431.

    Google Scholar 

  37. Sumida, K.; Horike, N.; Furukawa, S. Dynamic properties of a flexible metal-organic framework exhibiting a unique “picture frame”-like crystal morphology. Nano Res.., 2021, 14, 432–437.

    Google Scholar 

  38. Wu, A.-Q.; Wang, W.-Q.; Zhan, H.-B.; Cao, L.-A.; Ye, X.-L.; Zheng, J.-J.; Kumar, P. N.; Chiranjeevulu, K.; Deng, W.-H.; Wang, G.-E. et al. Layer-by-layer assembled dual-ligand conductive MOF nano-film with modulated chemiresistive sensitivity and selectivity. Nano Res.., 2021, 14, 438–443.

    Google Scholar 

  39. He, H.-H.; Li, L.-Y.; Liu, Y.; Kassymova, M.; Li, D.-D.; Zhang, L.-L.; Jiang, H.-L. Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Res.., 2021, 14, 444–449.

    Article  CAS  Google Scholar 

  40. Abraira, P. S.; Vilela, S. M. F.; Babaryk, A. A.; Antonino, M. C.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res.., 2021, 14, 450–457.

    Google Scholar 

  41. Ribas, A. B.; Vignatti, C.; Almarza, A. J.; Barrera, J. L.; Dolatkhah, Z.; Gándara, F.; Imaz, I.; Mas-Ballesté, R.; Alemán, J.; Maspoch, D. Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide. Nano Res.., 2021, 14, 458–465.

    Google Scholar 

  42. Chen, X.; Qiao, Z.-W.; Hou, B.; Jiang, H.; Gong, W.; Dong, J.-Q.; Li, H.-Y.; Cui, Y.; Liu, Y. Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. Nano Res.., 2021, 14, 466–472.

    Google Scholar 

  43. Shi, W.-J.; Zeng, L.-Z.; Cao, L.-Y.; Huang, Y.; Wang, C.; Lin, W.-B. Metal-organic layers as reusable solid fluorination reagents and heterogeneous catalysts for aromatic fluorination. Nano Res.., 2021, 14, 473–478.

    Google Scholar 

  44. Zhang, S.-W.; Li, J. P. H.; Zhao, J.-P.; Wu, D.; Yuan, B.; Hernández, W. Y.; Zhou, W.-J.; He, T.; Yu, Y.; Yang, Y. et al. Direct aerobic oxidation of monoalcohol and diols to acetals using tandem Ru@MOF catalysts. Nano Res.., 2021, 14, 479–485.

    Google Scholar 

  45. Kim, S.; Jee, S.; Choi, K. M.; Shin, D.-S. Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media. Nano Res.., 2021, 14, 486–492.

    Google Scholar 

  46. Blas, C. C.; Álvarez-Galván, C.; Orench, I. P.; Sánchez, A. G.; Oropeza, F. E.; Puebla, E. G.; Monge, Á.; de la Peña-O'Shea, V. A.; Gándara, F. Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks. Nano Res.., 2021, 14, 493–500.

    Google Scholar 

  47. Chen, X.-Y.; Li, K.; Yang, X.-X.; Lv, J.-Q.; Sun, S.; Li, S.-Q.; Cheng, D.-M.; Li, B.; Li, Y.-G.; Zang, H.-Y. Oxygen vacancy engineering of calcium cobaltate: A nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte. Nano Res.., 2021, 14, 501–506.

    Google Scholar 

  48. Wang, B.; Zhang, X.; Huang, H.-L.; Zhang, Z.-J.; Yildirim, T.; Zhou, W.; Xiang, S.-C.; Chen, B.-L. A microporous aluminum-based metalorganic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res.., 2021, 14, 507–511.

    Google Scholar 

  49. Verma, G.; Kumar, S.; Vardhan, H.; Ren, J.; Niu, Z.; Pham, T.; Wojtas, L.; Butikofer, S.; Garcia, J. C E.; Chen, Y.-S. et al. A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Res.., 2021, 14, 512–517.

    Google Scholar 

  50. Si, Y.-N.; He, X.; Jiang, J.; Duan, Z.-M.; Wang, W.-J.; Yuan, D.-Q. Highly effective H2/D2 separation in a stable Cu-based metalorganic framework. Nano Res.., 2021, 14, 518–525.

    Google Scholar 

  51. Wang, D.-M.; Dong, X.-L.; Han, Y.; Liu, Y.-L. Separation of hexane isomers by introducing “triangular-like and quadrilateral-like channels” in a bcu-type metal-organic framework. Nano Res.., 2021, 14, 526–531.

    Google Scholar 

  52. Vismara, R.; Nicola, C. D.; Millán, R. G.-S.; Domasevich, K. V.; Pettinari, C.; Navarro, J. A. R.; Galli, S. Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization. Nano Res.., 2021, 14, 532–540.

    Google Scholar 

  53. Yu, Y.; Yang, L.-F.; Tan, B.; Hu, J.-B.; Wang, Q.-J.; Cui, X.-L.; Xing, H.-B. Remarkable separation of C5 olefins in anion-pillared hybrid porous materials. Nano Res.., 2021, 14, 541–545.

    Google Scholar 

  54. Chen, S.; Behera, N.; Yang, C.; Dong, Q.-B.; Zheng, B.-S.; Li, Y.-Y.; Tang, Q.; Wang, Z.-X.; Wang, Y.-Q.; Duan, J.-G. A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Res.., 2021, 14, 546–553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China

    Yue-Biao Zhang

  2. Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China

    Qiaowei Li

  3. Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Technological Sciences and The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China

    Hexiang Deng

Authors
  1. Yue-Biao Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Qiaowei Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Hexiang Deng
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Yue-Biao Zhang, Qiaowei Li or Hexiang Deng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, YB., Li, Q. & Deng, H. Reticular chemistry at the atomic, molecular, and framework scales. Nano Res. 14, 335–337 (2021). https://doi.org/10.1007/s12274-020-3226-6

Download citation

  • Published: 28 November 2020

  • Issue Date: February 2021

  • DOI: https://doi.org/10.1007/s12274-020-3226-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.92.114

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.