Skip to main content
Log in

High-mobility patternable MoS2 percolating nanofilms

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fabrication of large-area and uniform semiconducting thin films of two-dimensional (2D) materials is paramount for the full exploitation of their atomic thicknesses and smooth surfaces in integrated circuits. In addition to elaborate vapor-based synthesis techniques for the wafer-scale growth of 2D films, solution-based approaches for high-quality thin films from the liquid dispersions of 2D flakes, despite underdeveloped, are alternative cost-effective tactics. Here, we present layer-by-layer (LbL) assembly as an effective approach to obtaining scalable semiconducting films of molybdenum disulfide (MoS2) for field-effect transistors (FETs). LbL assembly is achieved by coordinating electrochemically exfoliated MoS2 with cationic poly (diallyldimethylammonium chloride) (PDDA) through electrostatic interactions. The PDDA/MoS2 percolating nanofilms show controlled and self-limited growth on a variety of substrates, and are easily patterned through lift-off processes. Ion gel gated FETs are fabricated on these MoS2 nanofilms, and they show mobilities of 9.8 cm2·V−1·s1, on/off ratios of 2.1 × 105 with operating voltages less than 2 V. The annealing temperature in the fabrication process can be as low as 200 °C, thereby permitting the fabrication of flexible FETs on polyethylene terephthalate substrates. The LbL assembly technique holds great promise for the large-scale fabrication of flexible electronics based on solution-processed 2D semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258.

    CAS  Google Scholar 

  2. Xi, Y.; Serna, M. I.; Cheng, L. X.; Gao, Y.; Baniasadi, M.; Rodriguez-Davila, R.; Kim, J.; Quevedo-Lopez, M. A.; Minary-Jolandan, M. Fabrication of MoS2 thin film transistors via selective-area solution deposition methods. J. Mater. Chem. C 2015, 3, 3842–3847.

    CAS  Google Scholar 

  3. Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69–73.

    CAS  Google Scholar 

  4. Higgins, T. M.; Finn, S.; Matthiesen, M.; Grieger, S.; Synnatschke, K.; Brohmann, M.; Rother, M.; Backes, C.; Zaumseil, J. Electrolytegated n-type transistors produced from aqueous inks of WS2 nanosheets. Adv. Funct. Mater. 2019, 29, 1804387.

    Google Scholar 

  5. Lhuillier, E.; Pedetti, S.; Ithurria, S.; Heuclin, H.; Nadal, B.; Robin, A.; Patriarche, G.; Lequeux, N.; Dubertret, B. Electrolyte-gated field effect transistor to probe the surface defects and morphology in films of thick CdSe colloidal nanoplatelets. ACS Nano 2014, 8, 3813–3820.

    CAS  Google Scholar 

  6. De Arquer, F. P. G.; Armin, A.; Meredith, P.; Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100.

    Google Scholar 

  7. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

    CAS  Google Scholar 

  8. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Google Scholar 

  9. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  10. Lin, Z. Y.; Huang, Y.; Duan, X. F. Van der Waals thin-film electronics. Nat. Electron. 2019, 2, 378–388.

    Google Scholar 

  11. Yun, S. J.; Duong, D. L.; Ha, D. M.; Singh, K.; Phan, T. L.; Choi, W.; Kim, Y. M.; Lee, Y. H. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076.

    CAS  Google Scholar 

  12. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    CAS  Google Scholar 

  13. Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    CAS  Google Scholar 

  14. Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.

    Google Scholar 

  15. Li, J. T.; Naiini, M. M.; Vaziri, S.; Lemme, M. C.; Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 2014, 24, 6524–6531.

    CAS  Google Scholar 

  16. Carey, T.; Cacovich, S.; Divitini, G.; Ren, J. S.; Mansouri, A.; Kim, J. M.; Wang, C. X.; Ducati, C.; Sordan, R.; Torrisi, F. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 2017, 8, 1202.

    Google Scholar 

  17. Bessonov, A. A.; Kirikova, M. N.; Petukhov, D. I.; Allen, M.; Ryhänen, T.; Bailey, M. J. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 2015, 14, 199–204.

    CAS  Google Scholar 

  18. Koman, V. B.; Liu, P. W.; Kozawa, D.; Liu, A. T.; Cottrill, A. L.; Son, Y.; Lebron, J. A.; Strano, M. S. Colloidal nanoelectronic state machines based on 2D materials for aerosolizable electronics. Nat. Nanotechnol. 2018, 13, 819–827.

    CAS  Google Scholar 

  19. Gao, X. X.; Bian, G.; Zhu, J. Electronics from solution-processed 2D semiconductors. J. Mater. Chem. C 2019, 7, 12835–12861.

    CAS  Google Scholar 

  20. Wang, Z.; Kang, Y.; Zhao, S. C.; Zhu, J. Self-limiting assembly approaches for nanoadditive manufacturing of electronic thin films and devices. Adv. Mater. 2020, 32, 1806480.

    CAS  Google Scholar 

  21. Richardson, J. J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491.

    Google Scholar 

  22. Zhu, J.; Hersam, M. C. Assembly and electronic applications of colloidal nanomaterials. Adv. Mater. 2017, 29, 1603895.

    Google Scholar 

  23. Richardson, J. J.; Cui, J. W.; Björnmalm, M.; Braunger, J. A.; Ejima, H.; Caruso, F. Innovation in layer-by-layer assembly. Chem. Rev. 2016, 116, 14828–14867.

    CAS  Google Scholar 

  24. Ariga, K.; Ahn, E.; Park, M.; Kim, B. S. Layer-by-layer assembly: Recent progress from layered assemblies to layered nanoarchitectonics. Chem. Asian J. 2019, 14, 2553–2566.

    CAS  Google Scholar 

  25. An, Q.; Huang, T.; Shi, F. Correction: Covalent layer-by-layer films: Chemistry, design, and multidisciplinary applications. Chem. Soc. Rev. 2018, 47, 5529.

    CAS  Google Scholar 

  26. Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J. G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63.

    CAS  Google Scholar 

  27. Kiriya, D.; Chen, K.; Ota, H.; Lin, Y. J.; Zhao, P. D.; Yu, Z. B.; Ha, T. J.; Javey, A. Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors. J. Am. Chem. Soc. 2014, 136, 11188–11194.

  28. Zhu, J.; Liu, X. L.; Geier, M. L.; McMorrow, J. J.; Jariwala, D.; Beck, M. E.; Huang, W.; Marks, T. J.; Hersam, M. C. Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv. Mater. 2016, 28, 63–68.

    CAS  Google Scholar 

  29. Zhu, J.; Kang, J.; Kang, J. M.; Jariwala, D.; Wood, J. D.; Seo, J. W. T.; Chen, K. S.; Marks, T. J.; Hersam, M. C. Solution-processed dielectrics based on thickness-sorted two-dimensional hexagonal boron nitride nanosheets. Nano Lett. 2015, 15, 7029–7036.

    Google Scholar 

  30. Huang, Y.; Wu, J.; Xu, X. F.; Ho, Y.; Ni, G. X.; Zou, Q.; Koon, G. K. W.; Zhao, W. J.; Castro Neto, A. H.; Eda, G. et al. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200–207.

    CAS  Google Scholar 

  31. Lin, T. Z.; Kang, B. T.; Jeon, M.; Huffman, C.; Jeon, J.; Lee, S.; Han, W.; Lee, J.; Lee, S.; Yeom, G. et al. Controlled layer-by-layer etching of MoS2. ACS Appl. Mater. Interfaces 2015, 7, 15892–15897.

    CAS  Google Scholar 

  32. Xiao, S. Q.; Xiao, P.; Zhang, X. C.; Yan, D. W.; Gu, X. F.; Qin, F.; Ni, Z. H.; Han, Z. J.; Ostrikov, K. Atomic-layer soft plasma etching of MoS2. Sci. Rep. 2016, 6, 19945.

    CAS  Google Scholar 

  33. Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013–4017.

    CAS  Google Scholar 

  34. Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297–5303.

    CAS  Google Scholar 

  35. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

    CAS  Google Scholar 

  36. Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu, B. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Nat. Sci. Rev. 2020, 7, 324–332.

    CAS  Google Scholar 

  37. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    CAS  Google Scholar 

  38. Joo, P.; Jo, K.; Ahn, G.; Voiry, D.; Jeong, H. Y.; Ryu, S.; Chhowalla, M.; Kim, B. S. Functional polyelectrolyte nanospaced MoS2 multilayers for enhanced photoluminescence. Nano Lett. 2014, 14, 6456–6462.

    CAS  Google Scholar 

  39. Berdichevsky, Y.; Khandurina, J.; Guttman, A.; Lo, Y. H. UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens. Actuators B Chem. 2004, 97, 402–408.

    CAS  Google Scholar 

  40. Zhu, H.; Qin, X. Y.; Cheng, L. X.; Azcatl, A.; Kim, J.; Wallace, R. M. Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 2016, 8, 19119–19126.

    CAS  Google Scholar 

  41. Sun, J. B.; Giorgi, G.; Palummo, M.; Sutter, P.; Passacantando, M.; Camilli, L. A scalable method for thickness and lateral engineering of 2D materials. ACS Nano 2020, 14, 4861–4870.

    CAS  Google Scholar 

  42. Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

    CAS  Google Scholar 

  43. Zhao, Y. D.; Bertolazzi, S.; Maglione, M. S.; Rovira, C.; Mas-Torrent, M.; Samorì, P. Molecular approach to electrochemically switchable monolayer MoS2 transistors. Adv. Mater. 2020, 32, 2000740.

    CAS  Google Scholar 

  44. He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.

    CAS  Google Scholar 

  45. Ponomarev, E.; Gutiérrez-Lezama, I.; Ubrig, N.; Morpurgo, A. F. Ambipolar light-emitting transistors on chemical vapor deposited monolayer MoS2. Nano Lett. 2015, 15, 8289–8294.

    CAS  Google Scholar 

  46. Chang, H. Y.; Yang, S. X.; Lee, J.; Tao, L.; Hwang, W. S.; Jena, D.; Lu, N. S.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446–5452.

    CAS  Google Scholar 

  47. Perera, M. M.; Lin, M. W.; Chuang, H. J.; Chamlagain, B. P.; Wang, C. Y.; Tan, X. B.; Cheng, M. M. C.; Tománek, D.; Zhou, Z. X. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449–4458.

    CAS  Google Scholar 

  48. Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479, 310–316.

    CAS  Google Scholar 

  49. Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

    CAS  Google Scholar 

  50. Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

    Google Scholar 

  51. Wu, B. M.; Wang, X. D.; Tang, H. W.; Jiang, W.; Chen, Y.; Wang, Z.; Cui, Z. Z.; Lin, T.; Shen, H.; Hu, W. D. et al. Multifunctional MoS2 transistors with electrolyte gel gating. Small 2020, 16, 2000420.

    CAS  Google Scholar 

  52. Zhang, Y. J.; Ye, J. T.; Yomogida, Y.; Takenobu, T.; Iwasa, Y. Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett. 2013, 13, 3023–3028.

    CAS  Google Scholar 

  53. Zhang, Y. W.; Li, H.; Wang, H. M.; Xie, H.; Liu, R.; Zhang, S. L.; Qiu, Z. J. Thickness considerations of two-dimensional layered semiconductors for transistor applications. Sci. Rep. 2016, 6, 29615.

    CAS  Google Scholar 

  54. Zhang, C. J.; Wang, H. N.; Chan, W. M.; Manolatou, C.; Rana, F. Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory. Phys. Rev. B 2014, 89, 205436.

    Google Scholar 

  55. Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795–7804.

    CAS  Google Scholar 

  56. Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

    CAS  Google Scholar 

  57. Kang, D. H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. S.; Jang, Y. H.; Lee, S.; Park, J. H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099–1107.

    CAS  Google Scholar 

  58. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

    Google Scholar 

  59. Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128–2137.

    CAS  Google Scholar 

  60. Li, M. G.; Yao, J. D.; Wu, X. X.; Zhang, S. C.; Xing, B. R.; Niu, X. Y.; Yan, X. Y.; Yu, Y.; Liu, Y. L.; Wang, Y. W. P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 6276–6282.

    CAS  Google Scholar 

  61. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; KC, S.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068.

    CAS  Google Scholar 

  62. Choi, Y.; Kang, J. M.; Jariwala, D.; Kang, M. S.; Marks, T. J.; Hersam, M. C.; Cho, J. H. Low-voltage complementary electronics from ion-gel-gated vertical van der waals heterostructures. Adv. Mater. 2016, 28, 3742–3748.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 51873088), Tianjin Municipal Science and Technology Commission (No. 18JCZDJC38400), and 111 Project (B18030) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Yin, J., Bian, G. et al. High-mobility patternable MoS2 percolating nanofilms. Nano Res. 14, 2255–2263 (2021). https://doi.org/10.1007/s12274-020-3218-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3218-6

Keywords

Navigation