Skip to main content

g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: A hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis

Abstract

The advancement of electrocatalytic N2 reduction reaction (NRR) toward ambient NH3 synthesis lies in the development of more affordable electrocatalysts than noble metals. Recently, various nanostructures of transition metal compounds have been proposed as effective electrocatalysts; however, they exist in the form of loose powders, which have to be immobilized on a matrix before serving as the electrode for electrolysis. The matrix, being it carbon paper, carbon cloth or metal foam, is electrocatalytically inactive, whose introduction inevitably raises the invalid weight while sacrificing the active sites of the electrode. Herein, we report on the fabrication of a flexible ZrO2 nanofibrous membrane as a novel, self-supported electrocatalyst. The heteroatom doping can not only endow the nanofibrous membrane with excellent flexibility, but also induce oxygen vacancies which are responsible for easier adsorption of N2 on the ZrO2 surface. To improve the electrocatalytic activity, a facile SILAR approach is employed to decorate it with CdS quantum dots (QDs), thereby tuning its Fermi level. To improve the conductivity, a g-C3N4 nanolayer is further deposited which is both conductive and active. The resulting hierarchically structured, self-supported electrocatalyst, consisting of g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS QDs, integrates the merits of the three components, and exhibits a remarkable synergy toward NRR. Excellent NH3 yield of 6.32 × 10−10 mol·s−1cm−2 (−0.6 V vs. RHE) and Faradaic efficiency of 12.9% (−0.4 V vs. RHE) are attained in 0.1 M Na2SO4.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

    CAS  Google Scholar 

  2. [2]

    Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750.

    CAS  Google Scholar 

  3. [3]

    Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

    CAS  Google Scholar 

  4. [4]

    Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.

    CAS  Google Scholar 

  5. [5]

    Yang, Y. J.; Wang, S. Q.; Wen, H. M.; Ye, T.; Chen, J.; Li, C. P.; Du, M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362–15366.

    CAS  Google Scholar 

  6. [6]

    Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Google Scholar 

  7. [7]

    Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

    Google Scholar 

  8. [8]

    Deng, G. R.; Wang, T.; Alshehri, A. A.; Alzahrani, K. A.; Wang, Y.; Ye, H. J.; Luo, Y. L.; Sun, X. P. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification. J. Mater. Chem. A 2019, 7, 21674–21677.

    CAS  Google Scholar 

  9. [9]

    Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

    CAS  Google Scholar 

  10. [10]

    Zheng, J. W.; Liao, F. L.; Wu, S.; Jones, G.; Chen, T. Y.; Fellowes, J.; Sudmeier, T.; McPherson, I. J.; Wilkinson, I.; Tsang, S. C. E. Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angew. Chem., Int. Ed. 2019, 58, 17335–17341.

    CAS  Google Scholar 

  11. [11]

    Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 \({\rm{\mu}}{{\rm{g}}_{{\rm{N}}{{\rm{H}}_3}}} \cdot \,{\rm{mg}}_{{\rm{Cat}}}^{- 1} \cdot {{\rm{h}}^{- 1}}\) for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

    Google Scholar 

  12. [12]

    Wang, H. J.; Li, Y. H.; Li, C. J.; Deng, K.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Xue, H. R.; Wang, L. One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia. J. Mater. Chem. A 2019, 7, 801–805.

    CAS  Google Scholar 

  13. [13]

    Ren, X.; Zhao, J. X.; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H. et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 2019, 5, 116–121.

    CAS  Google Scholar 

  14. [14]

    Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541–15547.

    CAS  Google Scholar 

  15. [15]

    Luo, Y.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 2019, 3, 279–289.

    CAS  Google Scholar 

  16. [16]

    Yang, X.; Kattel, S.; Nash, J.; Chang, X. X.; Lee, J. H.; Yan, Y. S.; Chen, J. G.; Xu, B. J. Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride. Angew. Chem., Int. Ed. 2019, 58, 13768–13772.

    CAS  Google Scholar 

  17. [17]

    Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

    Google Scholar 

  18. [18]

    Ren, X.; Cui, G. W.; Chen, L.; Xie, F. Y.; Wei, Q.; Tian, Z. Q.; Sun, X. P. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst. Chem. Commun. 2018, 54, 8474–8477.

    CAS  Google Scholar 

  19. [19]

    Fang, W.; Zhao, J.; Wu, T.; Huang, Y. J.; Yang, L.; Liu, C. T.; Zhang, Q. C.; Huang, K.; Yan, Q. Y. Hydrophilic engineering of VOx-based nanosheets for ambient electrochemical ammonia synthesis at neutral pH. J. Mater. Chem. A 2020, 8, 5913–5918.

    CAS  Google Scholar 

  20. [20]

    Du, Y. Q.; Jiang, C.; Song, L.; Gao, B.; Gong, H.; Xia, W.; Sheng, L.; Wang, T.; He, J. P. Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. Nano Res. 2020, 13, 2784–2790.

    CAS  Google Scholar 

  21. [21]

    Wang, Y.; Dai, J.; Zhang, M.; Liu, Y. T.; Yu, J. Y.; Ding, B. P-doped WO3 flowers fixed on a TiO2 nanofibrous membrane for enhanced electroreduction of N2. Chem. Commun. 2020, 56, 12937–12940.

    CAS  Google Scholar 

  22. [22]

    Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.

    CAS  Google Scholar 

  23. [23]

    Chu, K.; Wang, J.; Liu, Y. P.; Li, Q. Q.; Guo, Y. L. Mo-doped SnS2 with enriched S-vacancies for highly efficient electrocatalytic N2 reduction: The critical role of the Mo-Sn-Sn trimer. J. Mater. Chem. A 2020, 8, 7117–7124.

    CAS  Google Scholar 

  24. [24]

    Li, D.; Chen, X. X.; Liu, Y. T.; Yu, J. Y.; Ding, B. Sb2S3 nanoparticles anchored on SnO2 nanofibers: A high-performance hybrid electrocatalyst toward ammonia synthesis under ambient conditions. Chem. Commun. 2019, 55, 13892–13895.

    Google Scholar 

  25. [25]

    Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y. S.; Xu, B. J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387–13391.

    CAS  Google Scholar 

  26. [26]

    Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.

    CAS  Google Scholar 

  27. [27]

    Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

    Google Scholar 

  28. [28]

    Zhang, X. P.; Kong, R. M.; Du, H. T.; Xia, L.; Qu, F. L. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem. Commun. 2018, 54, 5323–5325.

    CAS  Google Scholar 

  29. [29]

    Chen, X. X.; Liu, Y. T.; Ma, C. L.; Yu, J. Y.; Ding, B. Self-organized growth of flower-like SnS2 and forest-like ZnS nanoarrays on nickel foam for synergistic superiority in electrochemical ammonia synthesis. J. Mater. Chem. A 2019, 7, 22235–22241.

    CAS  Google Scholar 

  30. [30]

    Wang, H. J.; Yu, H. J.; Wang, Z. Q.; Li, Y. H.; Xu, Y.; Li, X. N.; Xue, H. R.; Wang, L. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Small 2019, 15, 1804769.

    Google Scholar 

  31. [31]

    Xiong, P.; Sun, B.; Sakai, N.; Ma, R. Z.; Sasaki, T.; Wang, S. J.; Zhang, J. P.; Wang, G. X. 2D superlattices for efficient energy storage and conversion. Adv. Mater. 2020, 32, 1902654.

    CAS  Google Scholar 

  32. [32]

    Wu, Z. Y.; Wang, Y. N.; Zhang, L.; Jiang, L.; Tian, W. C.; Cai, C. L.; Price, J.; Gu, Q. F.; Hu, L. F. A layered Zn0.4VOPO4·0.8H2O cathode for robust and stable Zn ion storage. ACS Appl. Energy Mater. 2020, 3, 3919–3927.

    CAS  Google Scholar 

  33. [33]

    Yang, P.; Wu, Z.; Jiang, Y.; Pan, Z.; Tian, W.; Jiang, L.; Hu, L. Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed (011) surface for wearable, all-solid-state supercapacitor. Adv. Energy Mater. 2018, 8, 1801392.

    Google Scholar 

  34. [34]

    Jiang, Y. C.; Song, Y.; Li, Y. M.; Tian, W. C.; Pan, Z. C.; Yang, P. Y.; Li, Y. S.; Gu, Q. F.; Hu, L. F. Charge transfer in ultrafine LDH nanosheets/graphene interface with superior capacitive energy storage performance. ACS Appl. Mater. Interfaces 2017, 9, 37645–37654.

    CAS  Google Scholar 

  35. [35]

    Gazquez, G. C.; Chen, H. L.; Veldhuis, S. A.; Solmaz, A.; Mota, C.; Boukamp, B. A.; Van Blitterswijk, C. A.; Ten Elshof, J. E.; Moroni, L. Flexible yttrium-stabilized zirconia nanofibers offer bioactive cues for osteogenic differentiation of human mesenchymal stromal cells. ACS Nano 2016, 10, 5789–5799.

    Google Scholar 

  36. [36]

    Song, J.; Wang, X. Q.; Yan, J. H.; Yu, J. Y.; Sun, G.; Ding, B. Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 2017, 7, 1636.

    Google Scholar 

  37. [37]

    Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 2019, 10, 2877.

    Google Scholar 

  38. [38]

    Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.

    CAS  Google Scholar 

  39. [39]

    Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M. et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.

    CAS  Google Scholar 

  40. [40]

    Reimann, C.; Bredow, T. Adsorption of nitrogen and ammonia at zirconia surfaces. J. Mol. Struc. Theochem 2009, 903, 89–99.

    CAS  Google Scholar 

  41. [41]

    Qu, S. Q.; Huang, J.; Yu, J. S.; Chen, G. L.; Hu, W.; Yin, M. M.; Zhang, R.; Chu, S. J.; Li, C. R. Ni3S2 nanosheet flowers decorated with CdS quantum dots as a highly active electrocatalysis electrode for synergistic water splitting. ACS Appl. Mater. Interfaces 2017, 9, 29660–29668.

    CAS  Google Scholar 

  42. [42]

    Si, F. Y.; Tang, C. Y.; Gao, Q. Z.; Peng, F.; Zhang, S. S.; Fang, Y. P.; Yang, S. Y. Bifunctional CdS@Co9S8/Ni3S2 catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting. J. Mater. Chem. A 2020, 8, 3083–3096.

    CAS  Google Scholar 

  43. [43]

    Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

    Google Scholar 

  44. [44]

    Xia, L.; Li, B. H.; Zhang, Y.; Zhang, R.; Ji, L.; Chen, H. Y.; Cui, G. W.; Zheng, H. G.; Sun, X. P.; Xie, F. Y. et al. Cr2O3 nanoparticle-reduced graphene oxide hybrid: A highly active electrocatalyst for N2 reduction at ambient conditions. Inorg. Chem. 2019, 58, 2257–2260.

    CAS  Google Scholar 

  45. [45]

    Zhang, X. X.; Liu, Q.; Shi, X. F.; Asiri, A. M.; Luo, Y. T.; Sun, X. P.; Li, T. S. TiO2 nanoparticles-reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2018, 6, 17303–17306.

    CAS  Google Scholar 

  46. [46]

    Huang, H.; Gong, F.; Wang, Y.; Wang, H. B.; Wu, X. F.; Lu, W. B.; Zhao, R. B.; Chen, H. Y.; Shi, X. F.; Asiri, A. M. et al. Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Res. 2019, 12, 1093–1098.

    CAS  Google Scholar 

  47. [47]

    Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

    CAS  Google Scholar 

  48. [48]

    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

    CAS  Google Scholar 

  49. [49]

    Liu, Y. T.; Tang, L.; Dai, J.; Yu, J. Y.; Ding, B. Promoted electrocatalytic nitrogen fixation in Fe-Ni layered double hydroxide arrays coupled to carbon nanofibers: The role of phosphorus doping. Angew. Chem., Int. Ed. 2020, 59, 13623–13627.

    CAS  Google Scholar 

  50. [50]

    Liu, Y. T.; Chen, X. X.; Yu, J. Y.; Ding, B. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 18903–18907.

    CAS  Google Scholar 

  51. [51]

    Mazánek, V.; Luxa, J.; Matějková, S.; Kučera, J.; Sedmidubský, D.; Pumera, M.; Sofer, Z. Ultrapure graphene is a poor electrocatalyst: Definitive proof of the key role of metallic impurities in graphene-based electrocatalysis. ACS Nano 2019, 13, 574–1582.

    Google Scholar 

  52. [52]

    Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 10246–10250.

    CAS  Google Scholar 

  53. [53]

    Chu, K.; Li, Q. Q.; Liu, Y. P.; Wang, J.; Cheng, Y. H. Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction. Appl. Catal. B Environ. 2020, 267, 118693.

    CAS  Google Scholar 

  54. [54]

    Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.

    CAS  Google Scholar 

  55. [55]

    Peng, G. M.; Wu, J. W.; Wang, M. Z.; Niklas, J.; Zhou, H.; Liu, C. Nitrogen-defective polymeric carbon nitride nanolayer enabled efficient electrocatalytic nitrogen reduction with high Faradaic efficiency. Nano Lett. 2020, 20, 2879–2885.

    CAS  Google Scholar 

  56. [56]

    Cai, Y. T.; Song, J.; Liu, X. Y.; Yin, X.; Li, X. R.; Yu, J. Y.; Ding, B. Soft BiOBr@TiO2 nanofibrous membranes with hierarchical heterostructures as efficient and recyclable visible-light photocatalysts. Environ. Sci. Nano 2018, 5, 2631–2640.

    CAS  Google Scholar 

  57. [57]

    Song, J.; Wu, X. H.; Zhang, M.; Liu, C.; Yu, J. Y.; Sun, G.; Si, Y.; Ding, B. Highly flexible, core-shell heterostructured, and visible-light-driven titania-based nanofibrous membranes for antibiotic removal and E. coil inactivation. Chem. Eng. J. 2020, 379, 122269.

    CAS  Google Scholar 

  58. [58]

    Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556.

    CAS  Google Scholar 

  59. [59]

    Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. Cadmium sulfide and nickel synergetic co-catalysts supported on graphitic carbon nitride for visible-light-driven photocatalytic hydrogen evolution. Sci. Rep. 2016, 6, 22268.

    CAS  Google Scholar 

  60. [60]

    Xu, T.; Ma, D. W.; Li, C. B.; Liu, Q.; Lu, S. Y.; Asiri, A. M.; Yang, C.; Sun, X. P. Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticles. Chem. Commun. 2020, 56, 3673–3676.

    CAS  Google Scholar 

  61. [61]

    Sun, Z. Y.; Huo, R. P.; Choi, C.; Hong, S.; Wu, T. S.; Qiu, J. S.; Yan, C.; Han, Z. S.; Liu, Y. C.; Soo, Y. L. et al. Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure. Nano Energy 2019, 62, 869–875.

    CAS  Google Scholar 

  62. [62]

    Pirkarami, A.; Rasouli, S.; Ghasemi, E. 3-D CdS@NiCo layered double hydroxide core-shell photoelectrocatalyst used for efficient overall water splitting. Appl. Catal. Environ. 2019, 241, 28–40.

    CAS  Google Scholar 

  63. [63]

    Zhou, X. J.; Shao, C. L.; Li, X. H.; Wang, X. X.; Guo, X. H.; Liu, Y. C. Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: Controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. J. Hazard. Mater. 2018, 344, 113–122.

    CAS  Google Scholar 

  64. [64]

    Kumar, S. G.; Kavitha, R.; Nithya, P. M. Tailoring the CdS surface structure for photocatalytic applications. J. Environ. Chem. Eng. 2020, 8, 104313.

    CAS  Google Scholar 

  65. [65]

    Zhao, Y. X.; Shi, R.; Bian, X. A.; Zhou, C.; Zhao, Y. F.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates? Adv. Sci. 2019, 6, 1802109.

  66. [66]

    Zhang, M.; Wang, Y.; Zhang, Y. Y.; Song, J.; Si, Y.; Yan, J. H.; Ma, C. L.; Liu, Y. T.; Yu, J. Y.; Ding, B. Conductive and elastic TiO2 nanofibrous aerogels: A new concept toward self-supported electrocatalysts with superior activity and durability. Angew. Chem., Int. Ed. 2020, 59, 23252–23260.

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2232019G-01), the National Natural Science Foundation of China (Nos. 21961132024, 51925302 and 51873029), the Natural Science Foundation of Shanghai (No. 19ZR1401100), the Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-03-E00024), the Program of Shanghai Academic Research Leader (No. 18XD1400200), and the DHU Distinguished Young Professor Program (No. LZA2020001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yitao Liu or Bin Ding.

Electronic Supplementary Material

12274_2020_3206_MOESM1_ESM.pdf

g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: A hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, J., Dai, J., Zhang, P. et al. g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: A hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis. Nano Res. 14, 1479–1487 (2021). https://doi.org/10.1007/s12274-020-3206-x

Download citation

Keywords

  • ZrO2 nanofibrous membrane
  • CdS quantum dots
  • g-C3N4 nanolayer
  • self-supported electrocatalyst
  • NH3 synthesis