Skip to main content

Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries


Various redox-active organic molecules can serve as ideal electrode materials to realize sustainable energy storage systems. Yet, to be more appropriate for practical use, considerable architectural engineering of an ultrathick, high-loaded organic electrode with reliable electrochemical performance is of crucial importance. Here, by utilizing the synergetic effect of the non-covalent functionalization of highly conductive non-oxidized graphene flakes (NOGFs) and introduction of mechanically robust cellulose nanofiber (CNF)-intermingled structure, a very thick (≈ 1 mm), freestanding organic nanohybrid electrode which ensures the superiority in cycle stability and areal capacity is reported. The well-developed ion/electron pathways throughout the entire thickness and the enhanced kinetics of electrochemical reactions in the ultrathick 5,10-dihydro-5,10-dimethylphenazine/NOGF/CNF (DMPZ-NC) cathodes lead to the high areal energy of 9.4 mWh·cm−2 (= 864 Wh·kg−1 at 158 W·kg−1). This novel ultrathick electrode architecture provides a general platform for the development of the high-performance organic battery electrodes.

This is a preview of subscription content, access via your institution.


  1. [1]

    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    CAS  Google Scholar 

  2. [2]

    Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.

    CAS  Google Scholar 

  3. [3]

    Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345–6404.

    CAS  Google Scholar 

  4. [4]

    Desilvestro, J.; Scheifele, W.; Haas, O. In situ determination of gravimetric and volumetric charge densities of battery electrodes: Polyaniline in aqueous and nonaqueous electrolytes. J. Electrochem. Soc. 1992, 139, 2727–2736.

    CAS  Google Scholar 

  5. [5]

    Guo, W.; Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 2012, 5, 5221–5225.

    CAS  Google Scholar 

  6. [6]

    Deng, S. R.; Kong, L. B.; Hu, G Q.; Wu, T.; Li, D.; Zhou, Y. H.; Li, Z. Y. Benzene-based polyorganodisulfide cathode materials for secondary lithium batteries. Electrochim. Acta 2006, 51, 2589–2593.

    CAS  Google Scholar 

  7. [7]

    Lu, Y.; Zhang, Q.; Li, L.; Niu, Z. Q.; Chen, J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 2018, 4, 2786–2813.

    CAS  Google Scholar 

  8. [8]

    Orita, A.; Verde, M. G; Sakai, M.; Meng, Y S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016, 7, 13230.

    CAS  Google Scholar 

  9. [9]

    Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 5335.

    CAS  Google Scholar 

  10. [10]

    Hollas, A.; Wei, X. L.; Murugesan, V.; Nie, Z. M.; Li, B.; Reed, D.; Liu, J.; Sprenkle, V.; Wang, W. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 2018, 3, 508–514.

    CAS  Google Scholar 

  11. [11]

    Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C. B.; Kang, K. Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem. 2017, 19, 2980–2985.

    CAS  Google Scholar 

  12. [12]

    Lim, H. D.; Lee, B.; Zheng, Y. P.; Hong, J.; Kim, J.; Gwon, H.; Ko, Y.; Lee, M.; Cho, K.; Kang, K. Rational design of redox mediators for advanced Li-O2 batteries. Nat. Energy 2016, 1, 16066.

    CAS  Google Scholar 

  13. [13]

    Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 2007, 19, 1616–1621.

    CAS  Google Scholar 

  14. [14]

    Walter, M.; Kravchyk, K. V.; Böfer, C.; Widmer, R.; Kovalenko, M. V. Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 2018, 30, 1705644.

    Google Scholar 

  15. [15]

    Chen, D. Y.; Avestro, A. J.; Chen, Z. H.; Sun, J. L.; Wang, S. L.; Xiao, M.; Erno, Z.; Algaradah, M. M.; Nassar, M. S.; Amine, K. et al. A rigid naphthalenediimide triangle for organic rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 2907–2912.

    CAS  Google Scholar 

  16. [16]

    Kolek, M.; Otteny, F.; Schmidt, P.; Mück-Lichtenfeld, C.; Einholz, C.; Becking, J.; Schleicher, E.; Winter, M.; Bieker, P.; Esser, B. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π-π interactions. Energy Environ. Sci. 2017, 10, 2334–2341.

    CAS  Google Scholar 

  17. [17]

    Chi, X. W.; Liang, Y. L.; Hao, F.; Zhang, Y.; Whiteley, J.; Dong, H.; Hu, P.; Lee, S.; Yao, Y. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem., Int. Ed. 2018, 57, 2630–2634.

    CAS  Google Scholar 

  18. [18]

    Cui, L. M.; Zhou, L. M.; Zhang, K.; Xiong, F. Y.; Tan, S. S.; Li, M. S.; An, Q. Y.; Kang, Y M.; Mai, L. Q. Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. Nano Energy 2019, 65, 103902.

    CAS  Google Scholar 

  19. [19]

    Lee, J.; Kim, H.; Park, M. J. Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives. Chem. Mater. 2016, 28, 2408–2416.

    CAS  Google Scholar 

  20. [20]

    Lee, M.; Hong, J.; Kim, H.; Lim, H. D.; Cho, S. B.; Kang, K.; Park, C. B. Organic nanohybrids for fast and sustainable energy storage. Adv. Mater. 2014, 26, 2558–2565.

    CAS  Google Scholar 

  21. [21]

    Yao, M.; Senoh, H.; Yamazaki, S. I.; Siroma, Z.; Sakai, T.; Yasuda, K. High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries. J. Power Sources 2010, 195, 8336–8340.

    CAS  Google Scholar 

  22. [22]

    Zhang, W. W.; Sun, P. K.; Sun, S. R. A precise theoretical method for high-throughput screening of novel organic electrode materials for Li-ion batteries. J. Materiomics 2017, 3, 184–190.

    Google Scholar 

  23. [23]

    Kim, J. K.; Kim, Y.; Park, S.; Ko, H.; Kim, Y. Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ. Sci. 2016, 9, 1264–1269.

    CAS  Google Scholar 

  24. [24]

    Guo, C. Y.; Zhang, K.; Zhao, Q.; Pei, L. K.; Chen, J. High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chem. Commun. 2015, 51, 10244–10247.

    CAS  Google Scholar 

  25. [25]

    Wang, H.; Hu, P. F.; Yang, J.; Gong, G. M.; Guo, L.; Chen, X. D. Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 2015, 27, 2348–2354.

    CAS  Google Scholar 

  26. [26]

    Cho, S. J.; Choi, K. H.; Yoo, J. T.; Kim, J. H.; Lee, Y. H.; Chun, S. J.; Park, S. B.; Choi, D. H.; Wu, Q. L.; Lee, S. Y. et al. Hetero-nanonet rechargeable paper batteries: Toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 2015, 25, 6029–6040.

    CAS  Google Scholar 

  27. [27]

    Anothumakkool, B.; Soni, R.; Bhange, S. N.; Kurungot, S. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ. Sci. 2015, 8, 1339–1347.

    CAS  Google Scholar 

  28. [28]

    Park, K. H.; Kim, B. H.; Song, S. H.; Kwon, J.; Kong, B. S.; Kang, K.; Jeon, S. Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Lett. 2012, 12, 2871–2876.

    CAS  Google Scholar 

  29. [29]

    Song, S. H.; Park, K. H.; Kim, B. H.; Choi, Y. W.; Jun, G. H.; Lee, D. J.; Kong, B. S.; Paik, K. W.; Jeon, S. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 2013, 25, 732–737.

    CAS  Google Scholar 

  30. [30]

    Kim, J.; Yoon, G.; Kim, J.; Yoon, H.; Baek, J.; Lee, J. H.; Kang, K.; Jeon, S. Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon 2018, 139, 309–316.

    CAS  Google Scholar 

  31. [31]

    Kim, J.; Han, N. M.; Kim, J.; Lee, J.; Kim, J. K.; Jeon, S. Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 2018, 10, 37507–37516.

    CAS  Google Scholar 

  32. [32]

    Kim, J.; Song, S. H.; Im, H. G.; Yoon, G.; Lee, D.; Choi, C.; Kim, J.; Bae, B. S.; Kang, K.; Jeon, S. Moisture barrier composites made of non-oxidized graphene flakes. Small 2015, 11, 3124–3129.

    CAS  Google Scholar 

  33. [33]

    Kwon, J.; Lee, S. H.; Park, K. H.; Seo, D. H.; Lee, J.; Kong, B. S.; Kang, K.; Jeon, S. Simple preparation of high-quality graphene flakes without oxidation using potassium salts. Small 2011, 7, 864–868.

    CAS  Google Scholar 

  34. [34]

    Kim, J.; Kim, J.; Song, S.; Zhang, S. Y.; Cha, J.; Kim, K.; Yoon, H.; Jung, Y.; Paik, K. W.; Jeon, S. Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon 2017, 113, 379–386.

    CAS  Google Scholar 

  35. [35]

    Novak, T. G.; Kim, J.; Kim, J.; Shin, H.; Tiwari, A. P.; Song, J. Y.; Jeon, S. Flexible thermoelectric films with high power factor made of non-oxidized graphene flakes. 2D Mater. 2019, 6, 045019.

    CAS  Google Scholar 

  36. [36]

    Ishii, Y.; Tashiro, K.; Hosoe, K.; Al-zubaidi, A.; Kawasaki, S. Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 2016, 18, 10411–10418.

    CAS  Google Scholar 

  37. [37]

    Song, Z. P.; Qian, Y. M.; Liu, X. Z.; Zhang, T.; Zhu, Y. B.; Yu, H. J.; Otani, M.; Zhou, H. S. A quinone-based oligomeric lithium salt for superior Li-organic batteries. Energy Environ. Sci. 2014, 7, 4077–4086.

    CAS  Google Scholar 

  38. [38]

    Ernould, B.; Devos, M.; Bourgeois, J. P.; Rolland, J.; Vlad, A.; Gohy, J. F. Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials. J. Mater. Chem. A 2015, 3, 8832–8839.

    CAS  Google Scholar 

  39. [39]

    Song, Z. P.; Qian, Y. M.; Gordin, M. L.; Tang, D. H.; Xu, T.; Otani, M.; Zhan, H.; Zhou, H. S.; Wang, D. H. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem., Int. Ed. 2015, 54, 13947–13951.

    CAS  Google Scholar 

  40. [40]

    Song, Z. P.; Qian, Y. M.; Zhang, T.; Otani, M.; Zhou, H. S. Poly (benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv. Sci. 2015, 2, 1500124.

    Google Scholar 

  41. [41]

    Wu, H. P.; Meng, Q. H.; Yang, Q.; Zhang, M.; Lu, K.; Wei, Z. X. Large-area polyimide/swcnt nanocable cathode for flexible lithiumion batteries. Adv. Mater. 2015, 27, 6504–6510.

    CAS  Google Scholar 

  42. [42]

    Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H. et al. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 2012, 134, 19694–19700.

    CAS  Google Scholar 

  43. [43]

    Xia, H.; Qian, Y. Y.; Fu, Y. S.; Wang, X. Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci. 2013, 17, 67–71.

    CAS  Google Scholar 

  44. [44]

    Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.

    CAS  Google Scholar 

  45. [45]

    Kuk, S. K.; Ham, Y.; Gopinath, K.; Boonmongkolras, P.; Lee, Y.; Lee, Y. W.; Kondaveeti, S.; Ahn, C.; Shin, B.; Lee, J. K. et al. Continuous 3D titanium nitride nanoshell structure for solar-driven unbiased biocatalytic CO2 reduction. Adv. Energy Mater. 2019, 9, 1900029.

    Google Scholar 

  46. [46]

    Ahn, C.; Park, J.; Cho, D.; Hyun, G.; Ham, Y.; Kim, K.; Nam, S. H.; Bae, G.; Lee, K.; Shim, Y. S. High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Funct. Compos. Struct. 2019, I, 032002.

    Google Scholar 

  47. [47]

    Hyun, G.; Cho, S. H.; Park, J.; Kim, K.; Ahn, C.; Tiwari, A. P.; Kim, I. D.; Jeon, S. 3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications. Electrochim. Acta 2018, 288, 108–114.

    CAS  Google Scholar 

  48. [48]

    Chun, S. J.; Choi, E. S.; Lee, E. H.; Kim, J. H.; Lee, S. Y.; Lee, S. Y. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 2012, 22, 16618–16626.

    CAS  Google Scholar 

  49. [49]

    Yu, Y. X. A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2014, 2, 8910–8917.

    CAS  Google Scholar 

  50. [50]

    Das, B.; Voggu, R.; Rout, C. S.; Rao, C. Changes in the electronic structure and properties of graphene induced by molecular chargetransfer. Chem. Commun. 2008, 5155–5157.

    Google Scholar 

  51. [51]

    Matsuzaki, H.; Ohkura, M. A.; Ishige, Y.; Nogami, Y.; Okamoto, H. Photoinduced switching to metallic states in the two-dimensional organic mott insulator dimethylphenazine-tetrafluorotetracyanoquinodimethane with anisotropic molecular stacks. Phys. Rev. B 2015, 91, 245140.

    Google Scholar 

  52. [52]

    Yu, B. C.; Park, K.; Jang, J. H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett. 2016, 1, 633–637.

    CAS  Google Scholar 

  53. [53]

    Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J. M. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219.

    Google Scholar 

  54. [54]

    Chiu, R. C.; Garino, T.; Cima, M. J. Drying of granular ceramic films: I, effect of processing variables on cracking behavior. J. Am. Ceram. Soc. 1993, 76, 2257–2264.

    CAS  Google Scholar 

  55. [55]

    Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

    CAS  Google Scholar 

Download references


This research was supported by Creative Materials Discovery Program (2017M3D1A1039558) and Nano-Material Technology Development Program (NRF-2016M3A7B4900119) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (MSIP). This work was also supported by the NRF of the Korea Government (MSIP) under Grant 2016R1E1A1A01943131.

Author information



Corresponding authors

Correspondence to Ki-Seok An, Chunjoong Kim or Seokwoo Jeon.

Electronic Supplementary Material


Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ham, Y., Ri, V., Kim, J. et al. Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Res. 14, 1382–1389 (2021).

Download citation


  • energy storage
  • organic electrodes
  • batteries
  • graphene
  • cellulose nanofibers