Skip to main content

Pulsed laser reshaping and fragmentation of upconversion nanoparticles — from hexagonal prisms to 1D nanorods through “Medusa”-like structures


One dimensional (1D) nanostructures attract considerable attention, enabling a broad application owing to their unique properties. However, the precise mechanism of 1D morphology attainment remains a matter of debate. In this study, ultrafast picosecond (ps) laser-induced treatment on upconversion nanoparticles (UCNPs) is offered as a tool for 1D-nanostructures formation. Fragmentation, reshaping through recrystallization process and bioadaptation of initially hydrophobic (β-Na1.5Y1.5F6: Yb3+, Tm3+/β-Na1.5Y1.5F6) core/shell nanoparticles by means of one-step laser treatment in water are demonstrated. “True” 1D nanostructures through “Medusa”-like structures can be obtained, maintaining anti-Stokes luminescence functionalities. A matter of the one-dimensional UCNPs based on direction of energy migration processes is debated. The proposed laser treatment approach is suitable for fast UCNP surface modification and nano-to-nano transformation, that open unique opportunities to expand UCNP applications in industry and biomedicine.

This is a preview of subscription content, access via your institution.


  1. [1]

    Deng, R. R.; Qin, F.; Chen, R. F.; Huang, W.; Hong, M. H.; Liu, X. G. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237–242.

    CAS  Article  Google Scholar 

  2. [2]

    Generalova, A. N.; Chichkov, B. N.; Khaydukov, E. V. Multicomponent nanocrystals with anti-stokes luminescence as contrast agents for modern imaging techniques. Adv. Colloid Interface Sci. 2017, 245, 1–19.

    CAS  Article  Google Scholar 

  3. [3]

    Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nano-particles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.

    CAS  Article  Google Scholar 

  4. [4]

    Li, H.; Tan, M. L.; Wang, X.; Li, F.; Zhang, Y. Q.; Zhao, L. L.; Yang, C. H.; Chen, G. Y. Temporal multiplexed in vivo upconversion imaging. J. Am. Chem. Soc. 2020, 142, 2023–2030.

    CAS  Article  Google Scholar 

  5. [5]

    Cheng, L.; Wang, C.; Liu, Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013, 5, 23–37.

    CAS  Article  Google Scholar 

  6. [6]

    Mironova, K. E.; Khochenkov, D. A.; Generalova, A. N.; Rocheva, V. V.; Sholina, N. V.; Nechaev, A. V.; Semchishen, V. A.; Deyev, S. M.; Zvyagin, A. V.; Khaydukov, E. V. Ultraviolet phototoxicity of upconversion nanoparticles illuminated with near-infrared light. Nanoscale 2017, 9, 14921–14928.

    CAS  Article  Google Scholar 

  7. [7]

    Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

    CAS  Article  Google Scholar 

  8. [8]

    Kumar, M.; Zhang, P. Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosens. Bioelectron. 2010, 25, 2431–2435.

    CAS  Article  Google Scholar 

  9. [9]

    Green, K. K.; Wirth, J.; Lim, S. F. Nanoplasmonic upconverting nanoparticles as orientation sensors for single particle microscopy. Sci. Rep. 2017, 7, 762.

    Article  CAS  Google Scholar 

  10. [10]

    Khaydukov, E. V.; Rocheva, V. V.; Mironova, K. E.; Generalova, A. N.; Nechaev, A. V.; Semchishen, V. A.; Panchenko, V. Y. Biocompatible upconversion ink for hidden anticounterfeit labeling. Nanotechnol. Russ. 2015, 10, 904–909.

    CAS  Article  Google Scholar 

  11. [11]

    Meruga, J. M.; Cross, W. M.; Stanley May, P.; Luu, Q.; Crawford, G. A.; Kellar, J. J. Security printing of covert quick response codes using upconverting nanoparticle inks. Nanotechnology 2012, 23, 395201.

    Article  CAS  Google Scholar 

  12. [12]

    Hao, S. W.; Shang, Y. F.; Li, D. Y.; Ågren, H.; Yang, C. H.; Chen, G. Y. Enhancing dye-sensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale 2017, 9, 6711–6715.

    CAS  Article  Google Scholar 

  13. [13]

    Shang, Y. F.; Hao, S. W.; Yang, C. H.; Chen, G. Y. Enhancing solar cell efficiency using photon upconversion materials. Nanomaterials 2015, 5, 1782–1809.

    CAS  Article  Google Scholar 

  14. [14]

    Rocheva, V. V.; Koroleva, A. V.; Savelyev, A. G.; Khaydukov, K. V.; Generalova, A. N.; Nechaev, A. V.; Guller, A. E.; Semchishen, V. A.; Chichkov, B. N.; Khaydukov, E. V. High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci. Rep. 2018, 8, 3663.

    Article  CAS  Google Scholar 

  15. [15]

    Chen, Y. W.; Zhang, J. M.; Liu, X.; Wang, S.; Tao, J.; Huang, Y. L.; Wu, W. B.; Li, Y.; Zhou, K.; Wei, X. W. et al. Noninvasive in vivo 3D bioprinting. Sci. Adv. 2020, 6, eaba7406.

    CAS  Article  Google Scholar 

  16. [16]

    Generalova, A. N.; Kochneva, I. K.; Khaydukov, E. V.; Semchishen, V. A.; Guller, A. E.; Nechaev, A. V.; Shekhter, A. B.; Zubov, V. P.; Zvyagin, A. V.; Deyev, S. M. Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay. Nanoscale 2015, 7, 1709–1717.

    CAS  Article  Google Scholar 

  17. [17]

    Nadort, A.; Zhao, J. B.; Goldys, E. M. Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties. Nanoscale 2016, 8, 13099–13130.

    CAS  Article  Google Scholar 

  18. [18]

    Buchinskaya, I. I.; Karimov, D. N.; Zakalyukin, R. M.; Gali, S. Vapor-phase growth of CdF2 whiskers in the CdF2-GaF3 system. Crystallogr. Rep. 2007, 52, 170–173.

    CAS  Article  Google Scholar 

  19. [19]

    Yang, D. D.; Chen, D. D.; He, H. L.; Pan, Q. W.; Xiao, Q. L.; Qiu, J. R.; Dong, G. P. Controllable phase transformation and mid-infrared emission from Er3+-doped hexagonal-/cubic-NaYF4 nanocrystals. Sci. Rep. 2016, 6, 29871.

    CAS  Article  Google Scholar 

  20. [20]

    Wang, L. Y.; Li, Y. D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 2006, 6, 1645–1649.

    Article  CAS  Google Scholar 

  21. [21]

    Yan, Z. J.; Chrisey, D. B. Pulsed laser ablation in liquid for micro/nanostructure generation. J. Photochem. Photobiol. C 2012, 13, 204–223.

    CAS  Article  Google Scholar 

  22. [22]

    Kabashin, A. V.; Delaporte, P.; Pereira, A.; Grojo, D.; Torres, R.; Sarnet, T.; Sentis, M. Nanofabrication with pulsed lasers. Nanoscale Res. Lett. 2010, 5, 454–463.

    CAS  Article  Google Scholar 

  23. [23]

    Barchanski, A.; Funk, D.; Wittich, O.; Tegenkamp, C.; Chichkov, B. N.; Sajti, C. L. Picosecond laser fabrication of functional gold-antibody nanoconjugates for biomedical applications. J. Phys. Chem. C 2015, 119, 9524–9533.

    CAS  Article  Google Scholar 

  24. [24]

    Mafuné, F.; Kohno, J. Y.; Takeda, Y.; Kondow, T.; Sawabe, H. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 2000, 104, 8333–8337.

    Article  CAS  Google Scholar 

  25. [25]

    Usui, H.; Shimizu, Y.; Sasaki, T.; Koshizaki, N. Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J. Phys. Chem. B 2005, 109, 120–124.

    CAS  Article  Google Scholar 

  26. [26]

    Katsuki, D.; Sato, T.; Suzuki, R.; Nanai, Y.; Kimura, S.; Okuno, T. Red luminescence of Eu3+ doped ZnO nanoparticles fabricated by laser ablation in aqueous solution. Appl. Phys. A 2012, 108, 321–327.

    CAS  Article  Google Scholar 

  27. [27]

    Sasaki, T.; Liang, C.; Nichols, W. T.; Shimizu, Y.; Koshizaki, N. Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl. Phys. A 2004, 79, 1489–1492.

    CAS  Article  Google Scholar 

  28. [28]

    Park, G. S.; Kim, K. M.; Mhin, S. W.; Eun, J. W.; Shim, K. B.; Ryu, J. H.; Koshizaki, N. Simple route for Y3Al5O12:Ce3+ colloidal nanocrystal via laser ablation in deionized water and its luminescence. Electrochem. Solid State Lett. 2008, 11, J23.

    CAS  Article  Google Scholar 

  29. [29]

    Edmonds, A. M.; Sobhan, M. A.; Sreenivasan, V. K. A.; Grebenik, E. A.; Rabeau, J. R.; Goldys, E. M.; Zvyagin, A. V. Nano-ruby: A promising fluorescent probe for background-free cellular imaging. Part. Part. Syst. Char. 2013, 30, 506–513.

    CAS  Article  Google Scholar 

  30. [30]

    Nee, C. H.; Yap, S. L.; Tou, T. Y.; Chang, H. C.; Yap, S. S. Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol. Sci. Rep. 2016, 6, 33966.

    CAS  Article  Google Scholar 

  31. [31]

    Maurer, E.; Barcikowski, S.; Gökce, B. Process chain for the fabrication of nanoparticle polymer composites by laser ablation synthesis. Chem. Eng. Technol. 2017, 40, 1535–1543.

    CAS  Article  Google Scholar 

  32. [32]

    Tamaki, Y.; Asahi, T.; Masuhara, H. Nanoparticle formation of vanadyl phthalocyanine by laser ablation of its crystalline powder in a poor solvent. J. Phys. Chem. A 2002, 106, 2135–2139.

    CAS  Article  Google Scholar 

  33. [33]

    Scaramuzza, S.; Agnoli, S.; Amendola, V. Metastable alloy nano-particles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: Influence of the chemical environment on structure and composition. Phys. Chem. Chem. Phys. 2015, 17, 28076–28087.

    CAS  Article  Google Scholar 

  34. [34]

    Onodera, Y.; Nunokawa, T.; Odawara, O.; Wada, H. Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water. J. Lumin. 2013, 137, 220–224.

    CAS  Article  Google Scholar 

  35. [35]

    Ikehata, T.; Onodera, Y.; Nunokawa, T.; Hirano, T.; Ogura, S.; Kamachi, T.; Odawara, O.; Wada, H. Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid. Appl. Surf. Sci. 2015, 348, 54–59.

    CAS  Article  Google Scholar 

  36. [36]

    Gemini, L.; Schmitz, T.; Kling, R.; Barcikowski, S.; Gökce, B. Upconversion nanoparticles synthesized by ultrashort pulsed laser ablation in liquid: Effect of the stabilizing environment. ChemPhysChem 2017, 18, 1210–1216.

    CAS  Article  Google Scholar 

  37. [37]

    Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757–2765.

    CAS  Article  Google Scholar 

  38. [38]

    Wilhelm, S. Perspectives for upconverting nanoparticles. ACS Nano 2017, 11, 10644–10653.

    CAS  Article  Google Scholar 

  39. [39]

    Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Surfactants and Polymers in Aqueous Solution; 2nd ed. Wiley & Sons, Ltd: Chichester, 2002.

    Book  Google Scholar 

  40. [40]

    Alyatkin, S.; Asharchuk, I.; Khaydukov, K.; Nechaev, A.; Lebedev, O.; Vainer, Y.; Semchishen, V.; Khaydukov, E. The influence of energy migration on luminescence kinetics parameters in upconversion nanoparticles. Nanotechnology 2017, 28, 035401.

    Article  CAS  Google Scholar 

  41. [41]

    Zhu, X. S., Chang, Y., Chen, Y. S. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010, 78, 209–215.

    CAS  Article  Google Scholar 

  42. [42]

    Fedorov, P. P.; Sobolev, B. P.; Belov, S. F. Fusibility diagram of the system NaF-YF3, and the cross-section Na0.4Y0.6F2.2-YOF. Inorg. Mater. 1979, 15, 640–643.

    Google Scholar 

  43. [43]

    Perera, S. S.; Amarasinghe, D. K.; Dissanayake, K. T.; Rabuffetti, F. A. Average and local crystal structure of ß-Er:Yb:NaYF4 upconverting nanocrystals probed by X-ray total scattering. Chem. Mater. 2017, 29, 6289–6297.

    CAS  Article  Google Scholar 

  44. [44]

    Blistanov, A. A.; Chernov, S. P.; Karimov, D. N.; Ouvarova, T. V. Peculiarities of the growth of disordered Na,R-fluorite (R=Y, Ce-Lu) single crystals. J. Cryst. Growth 2002, 237–239, 899–903.

    Article  Google Scholar 

  45. [45]

    Pin, M. W.; Park, E. J.; Choi, S.; Kim, Y. I.; Jeon, C. H.; Ha, T. H.; Kim, Y. H. Atomistic evolution during the phase transition on a metastable single NaYF4:Yb,Er upconversion nanoparticle. Sci. Rep. 2018, 8, 2199.

    Article  CAS  Google Scholar 

  46. [46]

    Chichkov, B. N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115.

    Article  Google Scholar 

  47. [47]

    Rafiei Miandashti, A.; Khosravi Khorashad, L.; Govorov, A. O.; Kordesch, M. E.; Richardson, H. H. Time-resolved temperature-jump measurements and theoretical simulations of nanoscale heat transfer using NaYF4: Yb3+: Er3+ upconverting nanoparticles. J. Phys. Chem. C 2019, 123, 3770–3780.

    CAS  Article  Google Scholar 

  48. [48]

    Liu, H. Q.; Han, J. K.; McBean, C.; Lewis, C. S.; Routh, P. K.; Cotlet, M.; Wong, S. S. Synthesis-driven, structure-dependent optical behavior in phase-tunable NaYF4:Yb,Er-based motifs and associated heterostructures. Phys. Chem. 2017, 19, 2153–2167.

    CAS  Google Scholar 

  49. [49]

    Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

    CAS  Article  Google Scholar 

  50. [50]

    Ye, S. R.; Chen, Z. F.; Ha, Y. C.; Wiley, B. J. Real-time visualization of diffusion-controlled nanowire growth in solution. Nano Lett. 2014, 14, 4671–4676.

    CAS  Article  Google Scholar 

  51. [51]

    Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M. M. et al. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016, 6, 35103.

    CAS  Article  Google Scholar 

  52. [52]

    Dyomics Catalogue Fluorescent Dyes for Bioanalytical and Hightech Applications, 2017 [Online]. (Access Date: 1 July 2020).

Download references


The authors would like to acknowledge Prof. Vladislav Ya. Panchenko, PhD Sergey Y. Alyatkin, PhD Vladimir A. Semchishen, PhD Vladimir I. Yusupov and PhD Andrey V. Nechaev for helpful and valuable discussions.

This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC «Crystallography and Photonics» RAS in part of «UCNP synthesis», by the Russian Foundation for Basic Research according to the research projects № 18-29-20064 in the part of «PL analysis» and № 20-32-70174 in the part of «complex structures analysis», by the Russian Science Foundation project № 18-79-10198 in the part of «UCNP analysis». BC acknowledges financial support from Lower Saxony through “Quanten und Nanometrologie” project (QUANOMET) and DFG Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453).

Author information



Corresponding author

Correspondence to Evgeny V. Khaydukov.

Electronic Supplementary Material


Pulsed laser reshaping and fragmentation of upconversion nanoparticles — from hexagonal prisms to 1D nanorods through “Medusa”-like structures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sajti, L., Karimov, D.N., Rocheva, V.V. et al. Pulsed laser reshaping and fragmentation of upconversion nanoparticles — from hexagonal prisms to 1D nanorods through “Medusa”-like structures. Nano Res. 14, 1141–1148 (2021).

Download citation


  • upconversion nanoparticles
  • fluoride crystals
  • upconversion nanorods
  • one-dimensional (1D) structures
  • laser-induced reshaping