Skip to main content

Self-assembly of semiconductor nanoparticles toward emergent behaviors on fluorescence


Due to the unique fluorescence characteristics, superstructures from self-assembly of semiconductor nanoparticles have become essential components of material and chemical science, and thus it has broad application potential in displays, single-photon source, sensing, biological tagging and emerging quantum technologies. Superstructure refers to an artificial functional architecture whose length scale is between the quantum scale and the macroscale. When solely treating this complicated stage fitted from less complicated pieces together (basic nanoparticles) and pile speculation on speculation, we must understand the fundamental questions, that is, what the hierarchy or specialization of function is at the stage. The uniqueness of this stage is not the collection of basic nanoparticles, but the behavior that emerges on fluorescence-basically a new type of behavior. Under the angle of view, this study reviews the advances in the fluorescence of individual semiconductor nanoparticles, inter-nanoparticles coupling and thus emergent fluorescence behaviors of assemblies. We also try to present the methodology for seeking emergent behaviors on fluorescence.

This is a preview of subscription content, access via your institution.


  1. [1]

    Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026.

    CAS  Google Scholar 

  2. [2]

    Liu, C.; Zheng, L. R.; Song, Q.; Xue, Z. J.; Huang, C. H.; Liu, L.; Qiao, X. Z.; Li, X.; Liu, K. Y.; Wang, T. A metastable crystalline phase in two-dimensional metallic oxide nanoplates. Angew. Chem., Int. Ed. 2019, 58, 2055–2059.

    CAS  Google Scholar 

  3. [3]

    Liu, Y. X.; Vanacken, J.; Chen, X. M.; Han, J. B.; Zhong, Z. Q.; Xia, Z. C.; Chen, B. R.; Wu, H.; Jin, Z.; Ge, J. Y. et al. Direct observation of nanoscale light confinement without metal. Adv. Mater. 2019, 31, 1806341.

    Google Scholar 

  4. [4]

    Xue, Z. J.; Yan, C.; Wang, T. From atoms to lives: The evolution of nanoparticle assemblies. Adv. Funct. Mater. 2019, 29, 1807658.

    Google Scholar 

  5. [5]

    Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

    CAS  Google Scholar 

  6. [6]

    Yan, C.; Wang, T. A new view for nanoparticle assemblies: From crystalline to binary cooperative complementarity. Chem. Soc. Rev. 2017, 46, 1483–1509.

    CAS  Google Scholar 

  7. [7]

    Yang, B.; Zhou, S.; Zeng, J.; Zhang, L. P.; Zhang, R. H.; Liang, K.; Xie, L.; Shao, B.; Song, S. L.; Huang, G. et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019.

    CAS  Google Scholar 

  8. [8]

    Qiao, X. Z.; Chen, X. Y.; Huang, C. H.; Li, A. L.; Li, X.; Lu, Z. L.; Wang, T. Detection of exhaled volatile organic compounds improved by hollow nanocages of layered double hydroxide on Ag nanowires. Angew. Chem., Int. Ed. 2019, 58, 16523–16527.

    CAS  Google Scholar 

  9. [9]

    Qin, X. Y.; Wang, T.; Jiang, L. Surface engineering of nanoparticles for triggering collective properties of supercrystals. Natl. Sci. Rev. 2017, 4, 672–677.

    Google Scholar 

  10. [10]

    Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

    CAS  Google Scholar 

  11. [11]

    Anderson, P. W. More is different. Science 1972, 177, 393–396.

    CAS  Google Scholar 

  12. [12]

    Martynenko, I. V.; Baimuratov, A. S.; Weigert, F.; Soares, J. X.; Dhamo, L.; Nickl, P.; Doerfel, I.; Pauli, J.; Rukhlenko, I. D.; Baranov, A. V. et al. Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Res. 2019, 12, 1595–1603.

    CAS  Google Scholar 

  13. [13]

    Bischof, T. S.; Correa, R. E.; Rosenberg, D.; Dauler, E. A.; Bawendi, M. G. Measurement of emission lifetime dynamics and biexciton emission quantum yield of individual InAs colloidal nanocrystals. Nano Lett. 2014, 14, 6787–6791.

    CAS  Google Scholar 

  14. [14]

    Hughes, K. E.; Stein, J. L.; Friedfeld, M. R.; Cossairt, B. M.; Gamelin, D. R. Effects of surface chemistry on the photophysics of colloidal InP nanocrystals. ACS Nano 2019, 13, 14198–14207.

    CAS  Google Scholar 

  15. [15]

    Lv, Y.; Huang, X. N.; Zhang, C. F.; Wang, X. Y.; Xiao, M. Multiple dark excitons in semiconductor CdSe nanocrystals. J. Phys. Chem. C 2018, 122, 23758–23763.

    CAS  Google Scholar 

  16. [16]

    Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193.

    CAS  Google Scholar 

  17. [17]

    Tamarat, P.; Bodnarchuk, M. I.; Trebbia, J. B.; Erni, R.; Kovalenko, M. V.; Even, J.; Lounis, B. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 2019, 18, 717–724.

    CAS  Google Scholar 

  18. [18]

    Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; Garcia Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015, 15, 6521–6527.

    CAS  Google Scholar 

  19. [19]

    Lin, S. X.; Li, J. Z.; Pu, C. D.; Lei, H. R.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824–831.

    CAS  Google Scholar 

  20. [20]

    Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560.

    CAS  Google Scholar 

  21. [21]

    Kim, Y.; Ham, S.; Jang, H.; Min, J. H.; Chung, H.; Lee, J.; Kim, D.; Jang, E. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2019, 2, 1496–1504.

    CAS  Google Scholar 

  22. [22]

    Xu, Z. H.; Li, Y.; Li, J. Z.; Pu, C. D.; Zhou, J. H.; Lv, L. L.; Peng, X. G. Formation of size-tunable and nearly monodisperse InP nanocrystals: Chemical reactions and controlled synthesis. Chem. Mater. 2019, 31, 5331–5341.

    CAS  Google Scholar 

  23. [23]

    Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

    CAS  Google Scholar 

  24. [24]

    Han, P. G.; Zhang, X.; Mao, X.; Yang, B.; Yang, S. Q.; Feng, Z. C.; Wei, D. H.; Deng, W. Q.; Pullerits, T.; Han, K. L. Size effect of lead-free halide double perovskite on luminescence property. Sci. China Chem. 2019, 62, 1405–1413.

    CAS  Google Scholar 

  25. [25]

    Gao, Y.; Peng, X. G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230–4235.

    CAS  Google Scholar 

  26. [26]

    Li, X.; Xue, Z. J.; Luo, D.; Huang, C. H.; Liu, L. Z.; Qiao, X. Z.; Liu, C.; Song, Q.; Yan, C.; Li, Y. C. et al. A stable lead halide perovskite nanocrystals protected by PMMA. Sci. China Mater. 2018, 61, 363–370.

    CAS  Google Scholar 

  27. [27]

    Li, X. C.; Li, C. L.; Wu, Y. Y.; Cao, J.; Tang, Y. A reaction-and-assembly approach using monoamine zinc porphyrin for highly stable large-area perovskite solar cells. Sci. China Chem. 2020, 63, 777–784.

    CAS  Google Scholar 

  28. [28]

    Jasieniak, J.; Mulvaney, P. From Cd-rich to Se-rich—The manipulation of CdSe nanocrystal surface stoichiometry. J. Am. Chem. Soc. 2007, 129, 2841–2848.

    CAS  Google Scholar 

  29. [29]

    Rempel, J. Y.; Trout, B. L.; Bawendi, M. G.; Jensen, K. F. Density functional theory study of ligand binding on CdSe (0001), (0001), and (1120) single crystal relaxed and reconstructed surfaces: Implications for nanocrystalline growth. J. Phys. Chem. B 2006, 110, 18007–18016.

    CAS  Google Scholar 

  30. [30]

    Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.

    CAS  Google Scholar 

  31. [31]

    Aldana, J.; Wang, Y. A.; Peng, X. G. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 2001, 123, 8844–8850.

    CAS  Google Scholar 

  32. [32]

    Thompson, N. J.; Wilson, M. W. B.; Congreve, D. N.; Brown, P. R.; Scherer, J. M.; Bischof, T. S.; Wu, M. F.; Geva, N.; Welborn, M.; Van Voorhis, T. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 2014, 13, 1039–1043.

    CAS  Google Scholar 

  33. [33]

    Tabachnyk, M.; Ehrler, B.; Gélinas, S.; Böhm, M. L.; Walker, B. J.; Musselman, K. P.; Greenham, N. C.; Friend, R. H.; Rao, A. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 2014, 13, 1033–1038.

    CAS  Google Scholar 

  34. [34]

    Mongin, C.; Garakyaraghi, S.; Razgoniaeva, N.; Zamkov, M.; Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 2016, 351, 369–372.

    CAS  Google Scholar 

  35. [35]

    Wu, M. F.; Congreve, D. N.; Wilson, M. W. B.; Jean, J.; Geva, N.; Welborn, M.; Van Voorhis, T.; Bulović, V.; Bawendi, M. G.; Baldo, M. A. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 2016, 10, 31–34.

    CAS  Google Scholar 

  36. [36]

    Mongin, C.; Moroz, P.; Zamkov, M.; Castellano, F. N. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 2018, 10, 225–230.

    CAS  Google Scholar 

  37. [37]

    Fang, Z. W.; Xing, Q. Y.; Fernandez, D.; Zhang, X.; Yu, G. H. A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179–1190.

    Google Scholar 

  38. [38]

    Nguyen, H. M.; Seitz, O.; Peng, W. N.; Gartstein, Y. N.; Chabal, Y. J.; Malko, A. V. Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes. ACSNano 2012, 6, 5574–5582.

    CAS  Google Scholar 

  39. [39]

    Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Large-area luminescent solar concentrators based on “stokes-shift-engineered” nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392–399.

    CAS  Google Scholar 

  40. [40]

    Li, Z. L.; Johnston, A.; Wei, M. Y.; Saidaminov, M. I.; Martins de Pina, J.; Zheng, X. P.; Liu, J. K.; Liu, Y.; Bakr, O. M.; Sargent, E. H. Solvent-solute coordination engineering for efficient perovskite luminescent solar concentrators. Joule 2020, 4, 631–643.

    CAS  Google Scholar 

  41. [41]

    Choi, J. J.; Luria, J.; Hyun, B. R.; Bartnik, A. C.; Sun, L. F.; Lim, Y. F.; Marohn, J. A.; Wise, F. W.; Hanrath, T. Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett. 2010, 10, 1805–1811.

    CAS  Google Scholar 

  42. [42]

    Curutchet, C.; Franceschetti, A.; Zunger, A.; Scholes, G. D. Examining förster energy transfer for semiconductor nanocrystalline quantum dot donors and acceptors. J. Phys. Chem. C 2008, 112, 13336–13341.

    CAS  Google Scholar 

  43. [43]

    Erdem, O.; Gungor, K.; Guzelturk, B.; Tanriover, I.; Sak, M.; Olutas, M.; Dede, D.; Kelestemur, Y.; Demir, H. V. Orientation-controlled nonradiative energy transfer to colloidal nanoplatelets: Engineering dipole orientation factor. Nano Lett. 2019, 19, 4297–4305.

    CAS  Google Scholar 

  44. [44]

    Shen, Y. Z.; Sun, Y. D.; Yan, R. Q.; Chen, E. Q.; Wang, H.; Ye, D. J.; Xu, J. J.; Chen, H. Y. Rational engineering of semiconductor QDs enabling remarkable 1O2 production for tumor-targeted photodynamic therapy. Biomaterials 2017, 148, 31–40.

    CAS  Google Scholar 

  45. [45]

    Shen, Y. Z.; Tian, Q.; Sun, Y. D.; Xu, J. J.; Ye, D. J.; Chen, H. Y. ATP-activatable photosensitizer enables dual fluorescence imaging and targeted photodynamic therapy of tumor. Anal. Chem. 2017, 89, 13610–13617.

    CAS  Google Scholar 

  46. [46]

    Luo, D.; Qin, X. Y.; Song, Q.; Qiao, X. Z.; Zhang, Z.; Xue, Z. J.; Liu, C.; Mo, G.; Wang, T. Ordered superparticles with an enhanced photoelectric effect by sub-nanometer interparticle distance. Adv. Funct. Mater. 2017, 27, 1701982.

    Google Scholar 

  47. [47]

    Cui, J. B.; Panfil, Y. E.; Koley, S.; Shamalia, D.; Waiskopf, N.; Remennik, S.; Popov, I.; Oded, M.; Banin, U. Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat. Commun. 2019, 10, 5401.

    CAS  Google Scholar 

  48. [48]

    Azzaro, M. S.; Dodin, A.; Zhang, D. Y.; Willard, A. P.; Roberts, S. T. Exciton-delocalizing ligands can speed up energy migration in nanocrystal solids. Nano Lett. 2018, 18, 3259–3270.

    CAS  Google Scholar 

  49. [49]

    Moroz, P.; Royo Romero, L.; Zamkov, M. Colloidal semiconductor nanocrystals in energy transfer reactions. Chem. Commun. 2019, 55, 3033–3048.

    CAS  Google Scholar 

  50. [50]

    Busov, V. K.; Frantsuzov, P. A. Models of semiconductor quantum dots blinking based on spectral diffusion. Opt. Spectrosc. 2019, 126, 70–82.

    CAS  Google Scholar 

  51. [51]

    Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.

    CAS  Google Scholar 

  52. [52]

    Yuan, G. C.; Gómez, D. E.; Kirkwood, N.; Boldt, K.; Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 2018, 12, 3397–3405.

    CAS  Google Scholar 

  53. [53]

    Chung, I.; Bawendi, M. G. Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots. Phys. Rev. B 2004, 70, 165304.

    Google Scholar 

  54. [54]

    Yu, M.; Van Orden, A. Enhanced fluorescence intermittency of CdSe-ZnS quantum-dot clusters. Phys. Rev. Lett. 2006, 97, 237402.

    Google Scholar 

  55. [55]

    Wang, S. Y.; Querner, C.; Dadosh, T.; Crouch, C. H.; Novikov, D. S.; Drndic, M. Collective fluorescence enhancement in nanoparticle clusters. Nat. Commun. 2011, 2, 364.

    Google Scholar 

  56. [56]

    Shepherd, D. P.; Whitcomb, K. J.; Milligan, K. K.; Goodwin, P. M.; Gelfand, M. P.; Van Orden, A. Fluorescence intermittency and energy transfer in small clusters of semiconductor quantum dots. J. Phys. Chem. C 2010, 114, 14831–14837.

    CAS  Google Scholar 

  57. [57]

    Xu, W. G.; Liu, W. W.; Schmidt, J. F.; Zhao, W. J.; Lu, X.; Raab, T.; Diederichs, C.; Gao, W. B.; Seletskiy, D. V.; Xiong, Q. H. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 2017, 541, 62–67.

    CAS  Google Scholar 

  58. [58]

    Tessier, M. D.; Biadala, L.; Bouet, C.; Ithurria, S.; Abecassis, B.; Dubertret, B. Phonon line emission revealed by self-assembly of colloidal nanoplatelets. ACS Nano 2013, 7, 3332–3340.

    CAS  Google Scholar 

  59. [59]

    Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

    CAS  Google Scholar 

  60. [60]

    Kovalev, D.; Ben Chorin, M.; Diener, J.; Koch, F.; Efros, A. L.; Rosen, M.; Gippius, N. A.; Tikhodeev, S. G. Porous Si anisotropy from photoluminescence polarization. Appl. Phys. Lett. 1995, 67, 1585–1587.

    CAS  Google Scholar 

  61. [61]

    Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292, 2060–2063.

    CAS  Google Scholar 

  62. [62]

    Yamaguchi, A. A. Anisotropic optical matrix elements in strained GaN quantum wells on semipolar and nonpolar substrates. Jpn. J. Appl. Phys. 2007, 46, L789.

    CAS  Google Scholar 

  63. [63]

    Sitt, A.; Salant, A.; Menagen, G.; Banin, U. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 2011, 11, 2054–2060.

    CAS  Google Scholar 

  64. [64]

    Wang, T.; Zhuang, J. Q.; Lynch, J.; Chen, O.; Wang, Z. L.; Wang, X. R.; LaMontagne, D.; Wu, H. M.; Wang, Z. W.; Cao, Y. C. Self-assembled colloidal superparticles from nanorods. Science 2012, 338, 358–363.

    CAS  Google Scholar 

  65. [65]

    Talapin, D. V.; Koeppe, R.; Götzinger, S.; Kornowski, A.; Lupton, J. M.; Rogach, A. L.; Benson, O.; Feldmann, J.; Weller, H. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 2003, 3, 1677–1681.

    CAS  Google Scholar 

  66. [66]

    Ugur, A.; Hatami, F.; Vamivakas, A. N.; Lombez, L.; Atatüre, M.; Volz, K.; Masselink, W. T. Highly polarized self-assembled chains of single layer InP/(In,Ga)P quantum dots. Appl. Phys. Lett. 2010, 97, 253113.

    Google Scholar 

  67. [67]

    Gao, X. Q.; Han, B.; Yang, X. K.; Tang, Z. Y. Perspective of chiral colloidal semiconductor nanocrystals: Opportunity and challenge. J. Am. Chem. Soc. 2019, 141, 13700–13707.

    CAS  Google Scholar 

  68. [68]

    Huo, S. W.; Duan, P. F.; Jiao, T. F.; Peng, Q. M.; Liu, M. H. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem., Int. Ed. 2017, 56, 12174–12178.

    CAS  Google Scholar 

  69. [69]

    Sang, Y. T.; Han, J. L.; Zhao, T. H.; Duan, P. F.; Liu, M. H. Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater, in press, DOI:

  70. [70]

    Sang, Y. T.; Yang, D.; Duan, P. F.; Liu, M. H. Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. Chem. Sci. 2019, 10, 2718–2724.

    CAS  Google Scholar 

  71. [71]

    Wang, P. P.; Yu, S. J.; Ouyang, M. Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality. J. Am. Chem. Soc. 2017, 139, 6070–6073.

    CAS  Google Scholar 

  72. [72]

    Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99–110.

    CAS  Google Scholar 

  73. [73]

    Vrehen, Q. H. F.; Schuurmans, M. F. H.; Polder, D. Superfluorescence: Macroscopic quantum fluctuations in the time domain. Nature 1980, 285, 70–71.

    Google Scholar 

  74. [74]

    Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

    Google Scholar 

  75. [75]

    Loudon, R. Photon bunching and antibunching. Phys. Bull. 1976, 27, 21–23.

    Google Scholar 

  76. [76]

    Lv, B. H.; Zhang, H. C.; Wang, L. P.; Zhang, C. F.; Wang, X. Y.; Zhang, J. Y.; Xiao, M. Photon antibunching in a cluster of giant CdSe/CdS nanocrystals. Nat. Commun. 2018, 9, 1536.

    Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. 21925405 and 201874005), the National Key Research and Development Program of China (No. 2018YFA0208800), and Chinese Academy of Sciences (Nos. XDA23030106 and YJKYYQ20180044).

Author information



Corresponding author

Correspondence to Tie Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lu, Z. & Wang, T. Self-assembly of semiconductor nanoparticles toward emergent behaviors on fluorescence. Nano Res. 14, 1233–1243 (2021).

Download citation


  • nanoparticle assembly
  • optical properties
  • ordered structures
  • coupling
  • emergent