Skip to main content
Log in

Macrophage-targeted single walled carbon nanotubes stimulate phagocytosis via pH-dependent drug release

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atherosclerotic cardiovascular disease is the leading cause of mortality in the world. A driving feature of atherosclerotic plaque formation is dysfunctional efferocytosis. Because the “don’t eat me” molecule CD47 is upregulated in atherosclerotic plaque cores, CD47-blocking strategies can stimulate the efferocytic clearance of apoptotic cells and thereby help prevent the progression of plaque buildup. However, these therapies are generally costly and, in clinical and murine trials, they have resulted in side effects including anemia and reticulocytosis. Here, we developed and characterized an intracellular phagocytosis-stimulating treatment in the CD47-SIRPα pathway. We loaded a novel monocyte/macrophage-selective nanoparticle carrier system with a small molecule enzymatic inhibitor that is released in a pH-dependent manner to stimulate macrophage efferocytosis of apoptotic cell debris via the CD47-SIRPα signaling pathway. We demonstrated that single-walled carbon nanotubes (SWNTs) can selectively deliver tyrosine phosphatase inhibitor 1 (TPI) intracellularly to macrophages, which potently stimulates efferocytosis, and chemically characterized the nanocarrier. Thus, SWNT-delivered TPI can stimulate macrophage efferocytosis, with the potential to reduce or prevent atherosclerotic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejarano, J.; Navarro-Marquez, M.; Morales-Zavala, F.; Morales, J. O.; Garcia-Carvajal; Araya-Fuentes, I. E.; Flores, Y.; Verdejo, H. E.; Castro, P. F.; Lavandero, S. et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: Evolution toward prospective theranostic approaches. Theranostics 2018, 8, 4710–4732.

    Article  CAS  Google Scholar 

  2. Andreou, I.; Takahashi, S.; Tsuda, M.; Shishido, K.; Antoniadis, A. P.; Papafaklis, M. I.; Mizuno, S.; Coskun, A. U.; Saito, S. Feldman, C. L. et al. Atherosclerotic plaque behind the stent changes after bare-metal and drug-eluting stent implantation in humans: Implications for late stent failure? Atherosclerosis 2016, 252, 9–14.

    Article  CAS  Google Scholar 

  3. Insull, W. Jr. The pathology of atherosclerosis: Plaque development and plaque responses to medical treatment. Am. J. Med. 2009, 122, S3–S14.

  4. Frisinghelli, A.; Mafrici, A. Regression or reduction in progression of atherosclerosis, and avoidance of coronary events, with lovastatin in patients with or at high risk of cardiovascular disease. Clin. Drug Invest. 2007, 27, 591–604.

    Article  CAS  Google Scholar 

  5. Yurdagul, A. Jr.; Doran, A. C.; Cai, B. S.; Fredman, G.; Tabas, I. A. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front. Cardiovasc. Med. 2018, 4, 86.

    Article  Google Scholar 

  6. Kojima, Y.; Volkmer, J. P.; McKenna, K.; Civelek, M.; Lusis, A. J.; Miller, C. L.; Direnzo, D.; Nanda, V.; Ye, J. Q.; Connolly, A. J. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 2016, 536, 86–90.

    Article  CAS  Google Scholar 

  7. Weiskopf, K. Cancer immunotherapy targeting the CD47/SIRP α axis. Eur. J. Cancer 2017, 76, 100–109.

    Article  CAS  Google Scholar 

  8. Kanthi, Y.; De La Zerda, A.; Smith, B. R. Nanotherapeutic Shots through the Heart of Plaque. ACS Nano 2020, 14, 1236–1242.

    Article  CAS  Google Scholar 

  9. Ryan, J. J. CD47-Blocking Antibodies and Atherosclerosis. JACC Basic Transl. Sci. 2016, 1, 413–415.

    Article  Google Scholar 

  10. Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

    Article  CAS  Google Scholar 

  11. Smith, B. R.; Ghosn, E. E. D.; Rallapalli, H.; Prescher, J. A; Larson, T.; Herzenberg, L. A.; Gambhir, S. S. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 2014, 9, 481–487.

    Article  CAS  Google Scholar 

  12. Schipper, M. L.; Nakayama-Ratchford, N..; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X. M.; Dai, H. J.; Gambhir, S. S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 2008, 3, 216–221.

    Article  CAS  Google Scholar 

  13. Alidori, S.; Akhavein, N.; Thorek, D. L. J.; Behling, K.; Romin, Y.; Queen, D.; Beattie, B. J.; Manova-Todorova, K.; Bergkvist, M.; Scheinberg, D. A. et al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci. Transl. Med. 2016, 8, 331ra39.

    Article  Google Scholar 

  14. Yang, M.; Zhang, M. F. Biodegradation of carbon nanotubes by macrophages. Front. Mater, 2019, 6, 225

    Article  Google Scholar 

  15. Watson, H. A.; Wehenkel, S.; Matthews, J.; Ager, A. SHP-1: The next checkpoint target for cancer immunotherapy? Biochem. Soc. Trans. 2016, 44, 356–362.

    Article  CAS  Google Scholar 

  16. Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 47, 2885–2911.

    Article  Google Scholar 

  17. Shen, S. H.; Wu, Y. S.; Liu, Y. C.; Wu, D. C. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085–4109.

    Article  CAS  Google Scholar 

  18. Zhuang, W. R.; Wang, Y.; Cui, P. F.; Xing, L.; Lee, J.; Kim, D.; Jiang, H. L; Oh, Y. K. Applications of π-π stacking interactions in the design of drug-delivery systems. J. Control. Release 2019, 294, 311–326.

    Article  CAS  Google Scholar 

  19. Aslan, B.; Ozpolat, B.; Sood, A. K.; Lopez-Berestein, G. Nanotechnology in cancer therapy. J. Drug Target. 2013, 21, 904–913.

    Article  CAS  Google Scholar 

  20. Yin, J.; Chen, Y.; Zhang, Z. H.; Han, X. Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers 2016, 8, 268.

    Article  Google Scholar 

  21. Shah, P. N.; Lin, T. Y.; Aanei, I. L.; Klass, S. H.; Smith, B. R.; Shaqfeh, E. S. G. Extravasation of brownian spheroidal nanoparticles through vascular pores. Biophys. J. 2018, 115, 1103–1115.

    Article  CAS  Google Scholar 

  22. Zhu, X. J.; Vo, C.; Taylor, M.; Smith, B. R. Non-spherical micro- and nanoparticles in nanomedicine. Mater. Horiz. 2019, 6, 1094–1121.

    Article  CAS  Google Scholar 

  23. Swirski, F. K.; Libby, P.; Aikawa, E.; Alcaide, P.; Luscinskas, F. W.; Weissleder, R.; Pittet, M. J. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 2007, 117, 195–205.

    Article  CAS  Google Scholar 

  24. Flores, A. M.; Hosseini-Nassab, N.; Jarr, K. U.; Ye, J. Q.; Zhu, X. J.; Wirka, R.; Koh, A. L.; Tsantilas, P.; Wang, Y.; Nanda, V. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 2020, 15, 154–161.

    Article  CAS  Google Scholar 

  25. Weiskopf, K.; Ring, A. M.; Ho, C. C. M.; Volkmer, J. P.; Levin, A. M.; Volkmer, A. K.; Özkan, E.; Fernhoff, N. B.; Van De Rijn, M.; Weissman, I. L.; et al. Engineered SIRPa variants as immunotherapeutic adjuvants to anticancer antibodies. Science 2013, 341, 88–91.

    Article  CAS  Google Scholar 

  26. Jang, E. J.; Lim, E. K.; Choi, Y.; Kim, E.; Kim, H. O.; Kim, D. J.; Suh, J. S.; Huh, Y. M.; Haam, S. π-Hyaluronan nanocarriers for CD44-targeted and pH-boosted aromatic drug delivery. J. Mater. Chem. B 2013, 1, 5686–5693.

    Article  CAS  Google Scholar 

  27. Kojima, Y.; Weissman, I. L.; Leeper, N. J. The role of efferocytosis in atherosclerosis. Circulation 2017, 135, 476–489.

    Article  CAS  Google Scholar 

  28. Flores, A. M.; Ye, J. Q.; Jarr, K. U.; Nassab, N. H.; Smith, B. R.; Leeper, N. J. Nanoparticle therapy for vascular diseases. Arterioscler., Thromb., Vasc. Biol. 2019, 39, 635–646.

    Article  CAS  Google Scholar 

  29. Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem., Int. Ed 2009, 48, 7668–7672.

    Article  CAS  Google Scholar 

  30. Abouelmagd, S. A.; Sun, B.; Chang, A. C.; Ku, Y. J.; Yeo, Y. Release kinetics study of poorly water-soluble drugs from nanoparticles: Are we doing it right? Mol. Pharmaceutics 2015, 12, 997–1003.

    Article  CAS  Google Scholar 

  31. Kundu, S.; Fan, K. K.; Cao, M. L.; Lindner, D. J.; Zhao, Z. J.; Borden, E.; Yi, T. L. Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. J. Immunol. 2010, 184, 6529–6536.

    Article  CAS  Google Scholar 

  32. Smith, B. R.; Zavaleta, C.; Rosenberg, J.; Tong, R.; Ramunas, J.; Liu, Z.; Dai, H. J.; Gambhir, S. S. High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model. Nano Today 2013, 8, 126–137.

    Article  CAS  Google Scholar 

  33. Smith, B. R.; Kempen, P.; Bouley, D.; Xu, A.; Liu, Z.; Melosh, N.; Dai, H. J.; Sinclair, R.; Gambhir, S. S. Shape matters: Intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett. 2012, 12, 3369–3377.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by an AHA Transformational Project grant (No. 18TPA34230113), NIH R01 CA244491, and Falk Catalyst grant. The authors wish to acknowledge Logan Soule for his support in writing the introduction, thank Robert Sinclair, Ai Leen Koh, and Yitian Zeng for their support in TEM characterization, thank Mahsa Gifani for her assistance, and Matthew Bernard and the MSU Flow Cytometry Core for support in Flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas J. Leeper or Bryan Ronain Smith.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ye, J., Hosseini-Nassab, N. et al. Macrophage-targeted single walled carbon nanotubes stimulate phagocytosis via pH-dependent drug release. Nano Res. 14, 762–769 (2021). https://doi.org/10.1007/s12274-020-3111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3111-3

Keywords

Navigation