Probing interactions at two-dimensional heterointerfaces by boron nitride-wrapped tip

Abstract

Non-covalent interactions are important for two-dimensional heterointerfaces but challenged to be accurately determined, especially when the dielectric hexagonal boron nitride (BN) is involved. Here, we present a comprehensive quantitative investigation on the interactions at the interfaces of BN-BN, BN-molybdenum disulfide, and BN-graphite using a BN-wrapped atomic force microscope tip and first-principle theory. The critical adhesion forces at BN-molybdenum disulfide and BN-graphite interfaces are measured to be 1.107 ± 0.062 and 0.999 ± 0.053 times that at BN-BN interface, respectively, while increase to 1.195 ± 0.076 and 1.085 ± 0.075 a.u. after exposure of the tip to radiation in scanning electron microscopy, with data repeatability higher than 86%. The result with non-radiated tip agrees with the van der Waals interactions predicted by the state-of-the-art density functional theory-based vdW2D method, whereas the effect of radiation comes from the introduced charges in the tip, indicating the crucial roles of both dispersion and electrostatic interactions in construction, manipulation and device application of two-dimensional heterostructures.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    CAS  Article  Google Scholar 

  2. [2]

    Koren, E.; Lörtscher, E.; Rawlings, C.; Knoll, A. W.; Duerig U. Adhesion and friction in mesoscopic graphite contacts. Science 2015, 348, 679–683.

    CAS  Article  Google Scholar 

  3. [3]

    Wang, W.; Dai, S. Y.; Li, X. D.; Yang, J. R.; Srolovitz, D. J.; Zheng, Q. S. Measurement of the cleavage energy of graphite. Nat. Commun. 2015, 6, 7853.

    CAS  Article  Google Scholar 

  4. [4]

    Tang, D. M.; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. I.; Sorokin, P. B.; Lou, J. et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 2014, 5, 3631.

    Article  Google Scholar 

  5. [5]

    Sanchez, D. A.; Dai, Z. H.; Wang, P.; Cantu-Chavez, A.; Brennan, C. J.; Huang, R.; Lu, N. S. Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl. Acad. Sci. USA 2018, 115, 7884–7889.

    CAS  Article  Google Scholar 

  6. [6]

    Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764–767.

    CAS  Article  Google Scholar 

  7. [7]

    Li, B. W.; Yin, J.; Liu, X. F.; Wu, H. R..; Li, J. D.; Li, X. M.; Guo, W. L. Probing van der Waals interactions at two-dimensional heterointerfaces. Nat. Nanotechnol. 2019, 14, 567–572.

    CAS  Article  Google Scholar 

  8. [8]

    Harl, J.; Kresse, G. Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory. Phys. Rev. B 2008, 77, 045136.

    Article  Google Scholar 

  9. [9]

    Pisani, C.; Maschio, L.; Casassa, S.; Halo, M.; Schütz, M.; Usvyat, D. Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications. J. Comput. Chem. 2008, 29, 2113–2124.

    CAS  Article  Google Scholar 

  10. [10]

    Bartlett, R. J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291–352.

    CAS  Article  Google Scholar 

  11. [11]

    Tkatchenko, A.; DiStasio, R. A. Jr.; Car, R.; Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012, 108, 236402.

    Article  Google Scholar 

  12. [12]

    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  13. [13]

    Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    CAS  Article  Google Scholar 

  14. [14]

    Klimes, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2009, 22, 022201.

    Google Scholar 

  15. [15]

    Björkman, T.; Gulans, A.; Krasheninnikov, A. V.; Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 2012, 108, 235502.

    Article  Google Scholar 

  16. [16]

    Liu, X. F.; Yang, J. B.; Guo, W. L. Semiempirical van der Waals method for two-dimensional materials with incorporated dielectric functions. Phys. Rev. B 2020, 101, 045428.

    CAS  Article  Google Scholar 

  17. [17]

    Dumitrică, T.; Yakobson, B. I. Rate theory of yield in boron nitride nanotubes. Phys. Rev. B 2005, 72, 035418.

    Article  Google Scholar 

  18. [18]

    Wang, G R.; Dai, Z. H.; Xiao, J. K.; Feng, S. Z.; Weng, C. X.; Liu, L. Q.; Xu Z. P.; Huang, R.; Zhang, Z. Bending of Multilayer van der Waals Materials. Phys. Rev. Lett. 2019, 123, 116101.

    CAS  Article  Google Scholar 

  19. [19]

    Kotakoski, J.; Jin, C. H.; Lehtinen, O.; Suenaga, K.; Krasheninnikov, A. V. Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 2010, 82, 113404.

    Article  Google Scholar 

  20. [20]

    Wang, J. S.; Kayastha, V. K.; Yap, Y. K.; Fan, Z. Y.; Lu, J. G.; Pan, Z. W.; Ivanov, I. N.; Puretzky, A. A.; Geohegan, D. B. Low temperature growth of boron nitride nanotubes on substrates. Nano Lett. 2005, 5, 2528–2532.

    CAS  Article  Google Scholar 

  21. [21]

    Johnson, D.; Hilal, N. Characterisation and quantification of membrane surface properties using atomic force microscopy: A comprehensive review. Desalination 2015, 356, 149–164.

    CAS  Article  Google Scholar 

  22. [22]

    Lee, C.; Li, Q. Y.; Kalb, W.; Liu, X. Z.; Berger, H.; Carpick, R. W.; Hone J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80.

    CAS  Article  Google Scholar 

  23. [23]

    Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.

    CAS  Article  Google Scholar 

  24. [24]

    Inman, H. F.; Bradley, E. L. Jr. The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. Commun. Stat. Theory Methods 1989, 18, 3851–3874.

    Article  Google Scholar 

  25. [25]

    Sim, K. S.; Tan, Y. Y.; Lai, M. A.; Tso, C. P.; Lim, W. K. Reducing scanning electron microscope charging by using exponential contrast stretching technique on post-processing images. J. Microsc. 2010, 238, 44–56.

    CAS  Article  Google Scholar 

  26. [26]

    Kim, K. H.; Akase, Z.; Suzuki, T.; Shindo, D. Charging effects on SEM/SIM contrast of metal/insulator system in various metallic coating conditions. Mater. Trans. 2010, 51, 1080–1083.

    CAS  Article  Google Scholar 

  27. [27]

    Cazaux, J. Charging in scanning electron microscopy “from inside and outside”. Scanning 2004, 26, 181–203.

    Article  Google Scholar 

  28. [28]

    Suzuki, T.; Endo, N.; Shibata, M.; Kamasaki, S.; Ichinokawa, T. Contrast differences between scanning ion and scanning electron microscope images. J. Vac. Sci. Technol. A 2004, 22, 49–52.

    CAS  Article  Google Scholar 

  29. [29]

    Jonassen, N. Electrostatics; 2nd ed. Kluwer Academic: Norwell, MA, 2002.

    Google Scholar 

  30. [30]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Article  Google Scholar 

  31. [31]

    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (No. 2019YFA0705400), National Natural Science Foundation of China (Nos. 51535005 and 11702132). The authors also thank for supports from the China Postdoctoral Science Foundation (Nos. 2016M600408 and 2017T100362) and the Natural Science Foundation of Jiangsu Province (No. BK20170770), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nos. MCMS-I-0418K01 and MCMS-I-0419K01), the Fundamental Research Funds for the Central Universities (Nos. NZ2020001, NC2018001, NP2019301, and NJ2019002), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. B. L. is grateful to Jidong Li and Jun Yin for valuable discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wanlin Guo.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, B., Liu, X. & Guo, W. Probing interactions at two-dimensional heterointerfaces by boron nitride-wrapped tip. Nano Res. (2020). https://doi.org/10.1007/s12274-020-3098-9

Download citation

Keywords

  • graphene
  • molybdenum disulfide (MoS2)
  • boron nitride (BN)
  • van der Waals force
  • force-displacement curve