Skip to main content

Water-soluble hollow nanocrystals from self-assembly of AIEE-active Pt(II) metallomesogens

Abstract

Luminescent hollow micro- and nanocrystals have been successfully obtained taking advantage of the self-assembly behavior and the aggregation-induced emission enhancement properties of several bispyrazolate Pt(II) metallomesogens decorated with four terminal alkyl chains. Oil-in-water droplets have been used to confine the Pt(II) compounds and drive them to be self-assembled via intermolecular Pt···Pt interactions into spherical aggregates of about 200 or 50 nm. Evaporation of the oil phase generates highly-stable aqueous dispersions of nanocrystals that emit a bright orange light as a result of the existence of 3MMLCT excited states. Different methods and conditions have been tested for studying the effect of several parameters such as the temperature and the stirring speed in the final particle size and in the polydispersity index. Moreover, the micro- and nanocrystals are able to entrap hydrophobic drugs between the alkyl chains of the compounds, forming stable dispersions of drug-loaded capsules in water. The droplet method is applied in the area of metallomesogens for the first time to synthesize self-assembled Pt(II) nanocapsules, which opens a new field of study that could allow the use of these liquid crystal materials in biomedical applications.

This is a preview of subscription content, access via your institution.

References

  1. Jenekhe, S. A.; Osaheni, J. A. Excimers and exciplexes of conjugated polymers. Science 1994, 265, 765–768.

    CAS  Google Scholar 

  2. Zhao, N.; Lam, J. W. Y.; Sung, H. H. Y.; Min Su, H.; Williams, I. D.; Wong, K. S.; Tang, B. Z. Effect of the counterion on light emission: a displacement strategy to change the emission behaviour from aggregation-caused quenching to aggregation-induced emission and to construct sensitive fluorescent sensors for Hg2+ detection. Chem. Eur. J. 2014, 20, 133–138.

    CAS  Google Scholar 

  3. Qi, J. P.; Hu, X. W.; Dong, X. C.; Lu, Y.; Lu, H. P.; Zhao, W. L.; Wu, W. Towards more accurate bioimaging of drug nanocarriers: Turning aggregation-caused quenching into a useful tool. Adv. Drug Deliv. Rev. 2019, 143, 206–225.

    CAS  Google Scholar 

  4. Wu, H.; Zhang, L.; Yang, J. F.; Bo, R. N.; Du, H. X.; Lin, K.; Zhang, D. L.; Ramachandran, M.; Shen, Y. B.; Xu, Y. X. et al. Rotatable aggregation-induced-emission/aggregation-caused-quenching ratio strategy for real-time tracking nanoparticle dynamics. Adv. Funct. Mater. 2020, 14, 1910348.

    Google Scholar 

  5. Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377.

    CAS  Google Scholar 

  6. Tian, W. G.; Zhang, J. M.; Yu, J.; Wu, J.; Nawaz, H.; Zhang, J.; He, J. S.; Wang, F. S. Cellulose - based solid fluorescent materials. Adv. Opt. Mater. 2016, 4, 2044–2050

    CAS  Google Scholar 

  7. Hu, R. R.; Leung, N. L. C.; Tang, B. Z. AIE macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562.

    CAS  Google Scholar 

  8. Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.

    Google Scholar 

  9. Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

    Google Scholar 

  10. Tang, B. Z.; Zhan, X. W.; Yu, G.; Lee, P. P. S.; Liu, Y. Q.; Zhu, D. B. Efficient blue emission from siloles. J. Mater. Chem. 2001, 11, 2974–2978.

    CAS  Google Scholar 

  11. Guo, Z. Q.; Yan, C. X.; Zhu, W. H. High-performance quinoline-malononitrile core as a building block for the diversity-oriented synthesis of AIEgens. Angew. Chem., Int. Ed. 2020, 59, 9812–9825.

    CAS  Google Scholar 

  12. Chen, Z.; Zhang, J.; Song, M.; Yin, J.; Yu, G. A.; Liu, S. H. A novel fluorene-based aggregation-induced emission (AIE)-active gold(i) complex with crystallization-induced emission enhancement (CIEE) and reversible mechanochromism characteristics. Chem. Commun. 2015, 51, 326–329.

    CAS  Google Scholar 

  13. Zhao, F.; Chen, Z.; Fan, C. B.; Liu, G.; Pu, S. Z. Aggregation-induced emission (AIE)-active highly emissive novel carbazole-based dyes with various solid-state fluorescence and reversible mechanofluorochromism characteristics. Dyes Pigments 2019, 164, 390–397.

    CAS  Google Scholar 

  14. Hou, X. G.; Wu, Y.; Cao, H. T.; Sun, H. Z.; Li, H. B.; Shan, G. G.; Su, Z. M. A cationic iridium(III) complex with aggregation-induced emission (AIE) properties for highly selective detection of explosives. Chem. Commun. 2014, 50, 6031–6034.

    CAS  Google Scholar 

  15. Gao, H. Z.; Xu, D. F.; Wang, Y. H.; Wang, Y. H.; Liu, X. L.; Han, A. X.; Zhang, C. Effects of alkyl chain length on aggregation-induced emission, self-assembly and mechanofluorochromism of tetraphenylethene modified multifunctional β-diketonate boron complexes. Dyes Pigments 2018, 150, 59–66.

    CAS  Google Scholar 

  16. Chowdhury, A.; Howlader, P.; Mukherjee, P. S. Aggregation-induced emission of platinum(II) metallacycles and their ability to detect nitroaromatics. Chem. Eur. J. 2016, 22, 7468–7478.

    CAS  Google Scholar 

  17. Li, P.; Zeng, Q. Y.; Sun, H. Z.; Akhtar, M.; Shan, G. G.; Hou, X. G.; Li, F. S.; Su, Z. M. Aggregation-induced emission (AIE) active iridium complexes toward highly efficient single-layer non-doped electroluminescent devices. J. Mater. Chem. C 2016, 4, 10464–10470.

    CAS  Google Scholar 

  18. Proetto, M. T.; Sanning, J.; Peterlechner, M.; Thunemann, M.; Stegemann, L.; Sadegh, S.; Devor, A.; Gianneschi, N. C.; Strassert, C. A. Phosphorescent Pt(II) complexes spatially arrayed in micellar polymeric nanoparticles providing dual readout for multimodal imaging. Chem. Commun. 2019, 55, 501–504.

    CAS  Google Scholar 

  19. Wu, Y. P.; Tan, X.; Lv, A. Q.; Yu, F. L.; Ma, H. L.; Shen, K.; Sun, Z. Y.; Chen, F.; Chen, Z. K.; Hang, X. C. Triplet excited-state engineering of phosphorescent Pt(II) complexes. J. Phys. Chem. Lett. 2019, 10, 5105–5110.

    CAS  Google Scholar 

  20. Li, K.; Tong, G. S. M.; Wan, Q. Y.; Cheng, G.; Tong, W. Y.; Ang, W. H.; Kwong, W. L.; Che, C. M. Highly phosphorescent platinum(II) emitters: Photophysics, materials and biological applications. Chem. Sci. 2016, 7, 1653–1673.

    CAS  Google Scholar 

  21. Liu, L. J.; Wang, X.; Wang, N.; Peng, T.; Wang, S. N. Bright, multi-responsive, sky-blue Platinum(II) phosphors based on a tetradentate chelating framework. Angew. Chem., Int. Ed. 2017, 24, 9288–9292.

    Google Scholar 

  22. Ganesan, P.; Hung, W. Y.; Tso, J. Y.; Ko, C. L.; Wang, T. H.; Chen, P. T.; Hsu, H. F.; Liu, S. H.; Lee, G. H.; Chou, P. T. et al. Functional pyrimidinyl pyrazolate Pt(II) complexes: Role of nitrogen atom in tuning the solid - state stacking and photophysics. Adv. Funct. Mater. 2019, 29, 1900923.

    Google Scholar 

  23. Fu, T. F.; Ao, L.; Gao, Z. C.; Zhang, X. L.; Wang, F. Advances on supramolecular assembly of cyclometalated platinum(II) complexes. Chin. Chem. Lett. 2016, 27, 1147–1154.

    CAS  Google Scholar 

  24. Wu, J. T.; Li, Y. Q.; Tan, C. Y.; Wang, X.; Zhang, Y. M.; Song, J.; Qu, J. L.; Wong, W. Y. Aggregation-induced near-infrared emitting platinum(II) terpyridyl complex: Cellular characterisation and lysosomespecific localisation. Chem. Commun. 2018, 54, 11144–11147.

    CAS  Google Scholar 

  25. Gao, L. R.; Ni, J.; Su, M. M.; Kang, J. J.; Zhang, J. J. Luminescence switching property of cycloplatinated(II) complexes bearing 2-phenylpyridine derivatives and the application for data security storage. Dyes Pigments 2019, 165, 231–238.

    CAS  Google Scholar 

  26. Li, R.; Xu, F. F.; Gong, Z. L.; Zhong, Y. W. Thermo-responsive light-emitting metal complexes and related materials. Inorg. Chem. Front. 2020, 7, 3258–3281.

    CAS  Google Scholar 

  27. Cuerva, C.; Campo, J. A.; Ovejero, P.; Torres, M. R.; Oliveira, E.; Santos, S. M.; Lodeiro, C.; Cano, M. Columnar discotic Pt(II) metallomesogens as luminescence multifunctional materials with chemo and thermosensor abilities. J. Mater. Chem. C 2014, 2, 9167–9181.

    CAS  Google Scholar 

  28. Cuerva, C.; Campo, J. A.; Cano, M.; Lodeiro, C. Platinum(II) metallomesogens: New external-stimuli-responsive photoluminescence materials. Chem. Eur. J. 2016, 22, 10168–10178.

    CAS  Google Scholar 

  29. Cuerva, C.; Campo, J. A.; Cano, M.; Lodeiro, C. Multi-stimuliresponsive properties of aggregation-enhanced emission-active unsymmetrical PtII metallomesogens through self-assembly. Chem. Eur. J. 2019, 25, 12046–12051.

    CAS  Google Scholar 

  30. Cuerva, C.; Campo, J. A.; Cano, M.; Caño-García, M.; Otón, J. M.; Lodeiro, C. Aggregation-induced emission enhancement (AIEE)-active Pt(II) metallomesogens as dyes sensitive to Hg2+ and dopant agents to develop stimuli-responsive luminescent polymer materials. Dyes Pigments 2020, 175, 108098.

    CAS  Google Scholar 

  31. Giménez, N.; Lalinde, E.; Lara, R.; Moreno, M. T. Design of luminescent, heteroleptic, cyclometalated PtII and PtIV complexes: Photophysics and effects of the cyclometalated ligands. Chem. Eur. J. 2019, 25, 5514–5526.

    Google Scholar 

  32. Chang, S. Y.; Kavitha, J.; Hung, J. Y.; Chi, Y.; Cheng, Y. M.; Li, E. Y.; Chou, P. T.; Lee, G. H.; Carty, A. J. Luminescent platinum(II) complexes containing isoquinolinyl indazolate ligands: Synthetic reaction pathway and photophysical properties. Inorg. Chem. 2007, 46, 7064–7074.

    CAS  Google Scholar 

  33. Ku, H. Y.; Tong, B. H.; Chi, Y.; Kao, H. C.; Yeh, C. C.; Chang, C. H.; Lee, G. H. Luminescent Pt(II) complexes bearing dual isoquinolinyl pyrazolates: Fundamentals and applications. Dalton Trans. 2015, 44, 8552–8563.

    CAS  Google Scholar 

  34. Ogasawara, M.; Lin, X.; Kurata, H.; Ouchi, H.; Yamauchi, M.; Ohba, T.; Kajitani, T.; Fukushima, T.; Numata, M.; Nogami, R. et al. Water-induced self-assembly of an amphiphilic perylene bisimide dyad into vesicles, fibers, coils, and rings. Mater. Chem. Front. 2018, 2, 171–179.

    CAS  Google Scholar 

  35. Sun, Y. X.; Mei, L.; Han, N.; Ding, X. Y.; Yu, C. H.; Yang, W. J.; Ruan, G. Examining the roles of emulsion droplet size and surfactant in the interfacial instability-based fabrication process of micellar nanocrystals. Nanoscale Res. Lett. 2017, 12, 434.

    Google Scholar 

  36. Piorkowski, D. T.; McClements, D. J. Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocoll. 2014, 42, 5–41.

    CAS  Google Scholar 

  37. Aliprandi, A.; Mauro, M.; De Cola, L. Controlling and imaging biomimetic self-assembly. Nat. Chem. 2016, 8, 10–15.

    CAS  Google Scholar 

  38. Liao, C. T.; Chen, H. H.; Hsu, H. F.; Poloek, A.; Yeh, H. H.; Chi, Y.; Wang, K. W.; Lai, C. H.; Lee, G. H.; Shih, C. W. et al. Mesomorphism and luminescence properties of platinum(II) complexes with tris(alkoxy)phenyl-functionalized pyridyl pyrazolate chelates. Chem. Eur. J. 2011, 17, 546–556.

    CAS  Google Scholar 

  39. Banerjee, R.; Purkayastha, P. Revival of the nearly extinct fluorescence of coumarin 6 in water and complete transfer of energy to rhodamine 123. Soft Matter 2017, 13, 5506–5508.

    CAS  Google Scholar 

  40. Banerjee, R.; Mondal, S.; Purkayastha, P. Revival, enhancement and tuning of fluorescence from Coumarin 6: Combination of host-guest chemistry, viscosity and collisional quenching. RSC Adv. 2016, 6, 105347–105349.

    CAS  Google Scholar 

  41. Banerjee, R.; Sinha, R.; Purkayast, P. β-Cyclodextrin encapsulated coumarin 6 on graphene oxide nanosheets: Impact on ground-state electron transfer and excited-state energy transfer. ACS Omega 2019, 4, 16153–16158.

    CAS  Google Scholar 

  42. Ma, W. X.; Chen, M. S.; Kaushal, S.; McElroy, M.; Zhang, Y.; Ozkan, C.; Bouvet, M.; Kruse, C.; Grotjahn, D.; Ichim, T. et al. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int. J. Nanomedicine 2012, 7, 1475–1487.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Associate Laboratory for Green Chemistry-LAQV, which is financed by national funds from FCT/MCTES (No. UIDB/50006/2020), and the PROTEOMASS Scientific Society (general funds). C. C. acknowledges the Spanish Foundation Alfonso Martín Escudero for his postdoctoral fellowship. J. F. L. thanks FCT/MEC (Portugal) the junior researcher contract under DL/57 programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristián Cuerva or Carlos Lodeiro.

Additional information

Dedication

In loving memory of Prof. José A. Campo Santillana.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuerva, C., Fernández-Lodeiro, J., Cano, M. et al. Water-soluble hollow nanocrystals from self-assembly of AIEE-active Pt(II) metallomesogens. Nano Res. 14, 245–254 (2021). https://doi.org/10.1007/s12274-020-3078-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3078-0

Keywords

  • Pt(II) metallomesogens
  • self-assembly
  • luminescent nanomaterials
  • droplets
  • nanocapsules