Abstract
Due to the high specific surface area, abundant nitrogen and micropores, ZIF-8 is a commonly used precursor for preparing high performance Fe-N-C catalysts. However, the Zn element is inevitably remained in the prepared Fe-N-C catalyst. Whether the residual Zn element affects the catalytic activity and active site center of the Fe-N-C catalyst caused widespread curiosity, but has not been studied yet. Herein, we built several Fe, Zn, and N co-doped graphene models to investigate the effect of Zn atoms on the electrocatalytic performance of Fe-N-C catalysts by using density functional theory method. The calculation results show that all the calculated Fe-Zn-Nx structures are thermodynamically stable due to the negative formation energies and relative stabilities. The active sites around Fe and Zn atoms in the structure of Fe-Zn-N6(III) show the lowest oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) overpotentials of 0.38 and 0.43 V, respectively. The bridge site of Fe-Zn in Fe-Zn-N5 shows the lowest ηHER of −0.26 V. A few structures with a better activity than that of FeN4 or ZnN4 are attributed to the synergistic effects between Fe and Zn atoms. The calculated ORR reaction pathways on Fe-Zn-N6(III) show that H2O is the final product and the ORR mechanism on the catalyst would be a four-electron process, and the existence of Zn element in the Fe-N-C catalysts plays a key role in reducing the ORR activation energy barrier. The results are helpful for the deep understand of high-performance Fe-N-C catalysts.
Similar content being viewed by others
References
Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.
Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H. et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020, 13, 2063–2071.
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.
Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.
Li, Y. C.; Hu, R. M.; Wan, X.; Shang, J. X.; Wang, F. H.; Shui, J. L. Density functional theory calculation of Zn and N codoped graphene for oxygen reduction and evolution reactions. Adv. Theory Simul., in press, DOI: https://doi.org/10.1002/adts.202000054.
Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X. Y.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.
Wang, L.; Wan, X.; Liu, S. Y.; Xu, L.; Shui, J. L. Fe-N-C catalysts for PEMFC: Progress towards the commercial application under DOE reference. J. Energy Chem. 2019, 39, 77–87.
Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.
Zhou, S.; Liu, N. S.; Wang, Z. Y.; Zhao, J. J. Nitrogen-doped graphene on transition metal substrates as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions. ACS Appl. Mater. Interfaces 2017, 9, 22578–22587.
Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.
Stariha, S.; Artyushkova, K.; Workman, M. J.; Serov, A.; McKinney, S.; Halevi, B.; Atanassov, P. PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design. J. Power Sources 2016, 326, 43–49.
He, D. P.; Tang, H. L.; Kou, Z. K.; Pan, M.; Sun, X. L.; Zhang, J. J.; Mu, S. C. Engineered graphene materials: Synthesis and applications for polymer electrolyte membrane fuel cells. Adv. Mater. 2017, 29, 1601741.
Wang, J. Y.; Xu, M.; Zhao, J. Q.; Fang, H. F.; Huang, Q. Z.; Xiao, W. P.; Li, T.; Wang, D. L. Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction. Appl. Catal. B Environ. 2018, 237, 228–236.
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.
Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.
Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q.; Gu, L.; Li, Y. D. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.
Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem.. Int. Ed. 2020, 59, 10651–10657.
Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.
Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.
Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339.
Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.
Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P. et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem., Int. Ed. 2015, 127, 10045–10048.
Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. G.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.
Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.
Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity. Angew. Chem., Int. Ed. 2010, 49, 548–551.
Morris, W.; Leung, B.; Furukawa, H.; Yaghi, O. K.; He, N.; Hayashi, H.; Houndonougbo, Y.; Asta, M.; Laird, B. B.; Yaghi, O. M. A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2010, 132, 11006–11008.
Zhou, X.; Zhang, H. P.; Wang, G. Y.; Yao, Z. G.; Tang, Y. R.; Zheng, S. S. Zeolitic imidazolate framework as efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate. J. Mol. Catal. A: Chem. 2013, 366, 43–47.
Yang, J.; Li, W.; Wang, D.; Li, Y. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, doi: https://doi.org/10.1002/adma.202003300.
Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.
Wen, J. F.; Chen, Y. J.; Ji, S. F.; Zhang, J.; Wang, D. S.; Li, Y. D. Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res. 2019, 12, 2584–2588.
Zhang, D. Y.; Chen, W. X.; Li, Z.; Chen, Y. J.; Zheng, L. R.; Gong, Y.; Li, Q. H.; Shen, R. A.; Han, Y. H.; Cheong, W. C. et al. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chem. Commun. 2018, 54, 4274–4277.
Armel, V.; Hindocha, S.; Salles, F.; Bennett, S.; Jones, D.; Jaouen, F. Structural descriptors of zeolitic-imidazolate frameworks are keys to the activity of Fe-N-C catalysts. J. Am. Chem. Soc. 2017, 139, 453–464.
Li, J. K.; Brüller, S.; Sabarirajan, D. C.; Ranjbar-Sahraie, N.; Sougrati, M. T.; Cavaliere, S.; Jones, D.; Zenyuk, I. V.; Zitolo, A.; Jaouen, F. Designing the 3D architecture of PGM-free cathodes for H2/air proton exchange membrane fuel cells. ACS Appl. Energy Mater. 2019, 2, 7211–7222.
Ren, G. Y.; Gao, L. L.; Teng, C.; Li, Y.; Yang, H. Q.; Shui, J. L.; Lu, X. Y.; Zhu, Y.; Dai, L. M. Ancient chemistry “Pharaoh’s Snakes” for efficient Fe-/N-doped carbon electrocatalysts. ACS Appl. Mater. Interfaces 2018, 10, 10778–10785.
Sun, X. P.; Wei, P.; Gu, S. Q.; Zhang, J. X.; Jiang, Z.; Wan, J.; Chen, Z. Y.; Huang, L.; Xu, Y.; Fang, C. et al. Atomic-level Fe-N-C coupled with Fe3C-Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts. Small 2020, 16, 1906057.
Morozan, A.; Goellner, V.; Nedellec, Y.; Hannauer, J.; Jaouen, F. Effect of the transition metal on metal-nitrogen-carbon catalysts for the hydrogen evolution reaction. J. Chem. Soc. 2015, 162, H719–H726.
Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 2018, 8, 1701345.
Ratso, S.; Ranjbar Sahraie, N.; Sougrati, M. T.; Käärik, M.; Kook, M.; Saar, R.; Paiste, P.; Jia, Q. Y.; Leis, J.; Mukerjee, S. et al. Synthesis of highly-active Fe-N-C catalysts for PEMFC with carbide-derived carbons. J. Mater. Chem. A 2018, 6, 14663–14674.
Ahn, S. H.; Yu, X. W.; Manthiram, A. “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 2017, 29, 1606534.
Li, J. K.; Jia, Q. Y.; Mukerjee, S.; Sougrati, M. T.; Drazic, G.; Zitolo, A.; Jaouen, F. The challenge of achieving a high density of Fe-based active sites in a highly graphitic carbon matrix. Catalysts 2019, 9, 144.
Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.
Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416.
Li, Y. C.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Wan, X.; Hu, R. M.; Guo, X.; Hong, S.; Shui, J. L. Preparation of Fe-N-C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J. Mater. Chem. A 2019, 7, 26147–26153.
Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824–2832.
Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.
Wang, Y.; Wang, M. Y.; Zhang, Z. S.; Wang, Q.; Jiang, Z.; Lucero, M.; Zhang, X.; Li, X. X.; Gu, M.; Feng, Z. X. et al. Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal. 2019, 9, 6252–6261.
Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.
Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116–3122.
Li, F.; Ding, X. B.; Cao, Q. C.; Qin, Y. H.; Wang, C. A ZIF-derived hierarchically porous Fe-Zn-N-C catalyst synthesized via a two-stage pyrolysis for the highly efficient oxygen reduction reaction in both acidic and alkaline media. Chem. Commun. 2019, 55, 13979–13982.
Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2018, 57, 1204–1208.
Gimme, S. Semiempirical GGA-type density functional constructed with a long-range dis persion correction. J. Comput. Chem. 2006, 27, 1787–1799.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643.
Kattel, S.; Atanassov, P.; Kiefer, B. Stability, electronic and magnetic properties of in-plane defects in graphene: A first-principles study. J. Phys. Chem. C 2012, 116, 8161–8166.
Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.
Hunter, M. A.; Fischer, J. M. T. A.; Yuan, Q. H.; Hankel, M.; Searles, D. J. Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction. ACS Catal. 2019, 9, 7660–7667.
Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23–J26.
Sun, Y. L.; Wang, J.; Liu, Q.; Xia, M. R.; Tang, Y. F.; Gao, F. M.; Hou, Y. L.; Tse, J.; Zhao, Y. F. Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175–27185.
Yang, Y. Q.; Zhang, H.; Liang, Z. F.; Yin, Y. R.; Mei, B. B.; Song, F.; Sun, F. F.; Gu, S. Q.; Jiang, Z.; Wu, Y. E. et al. Role of local coordination in bimetallic sites for oxygen reduction: A theoretical analysis. J. Energy Chem. 2020, 44, 131–137.
Hu, R. M.; Li, Y. C.; Zeng, Q. W.; Shang, J. X. Role of active sites in N-coordinated Fe-Co dual-metal doped graphene for oxygen reduction and evolution reactions: A theoretical insight. Appl. Surf. Sci. 2020, 525, 146588.
Hu, R. M.; Shang, J. X. Quantum capacitance of transition metal and nitrogen co-doped graphenes as supercapacitors electrodes: A DFT study. Appl. Surf. Sci. 2019, 496, 143659.
Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 11053–11077.
Gao, G. P.; O’Mullane, A. P.; Du, A. J. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017, 7, 494–500.
Tang, Q.; Jiang, D. E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016, 6, 4953–1961.
Li, M. T.; Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. J. Catal. 2014, 314, 66–72.
Kattel, S.; Wang, G. F. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014, 5, 452–456.
Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268.
Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985, 31, 1695–1697.
Acknowledgements
The authors acknowledge the financial support from the National Natural Science Foundation of China under Grant Nos. 21673014 and 21975010. This research is supported by the high-performance computing (HPC) resources at Beihang University. The work is carried out at LvLiang Cloud Computing Center of China, and the calculations are performed on TianHe-2.
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Li, Y., Hu, R., Chen, Z. et al. Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: theoretical considerations. Nano Res. 14, 611–619 (2021). https://doi.org/10.1007/s12274-020-3072-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-020-3072-6