Skip to main content

CsPbBrxI3-x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes

Abstract

All-inorganic α-CsPbBrxI3-x perovskites featuring nano-sized crystallites show great potential for pure-red light-emitting diode (LED) applications. Currently, the CsPbBrxI3–x LEDs based on nano-sized α-CsPbBrxI3-x crystallites have been fabricated mainly via the classical colloidal route including a tedious procedure of nanocrystal synthesis, purification, ligand or anion exchange, film casting, etc. With the usually adopted conventional LED device structure, only high turn-on voltages (> 2.7) have been achieved for CsPbBrxI3-x LEDs. Moreover, this mix-halide system may suffer from severe spectra-shift under bias. In this report, CsPbBrxI3-x thin films featuring nano-sized crystallites are prepared by incorporating multiple ammonium ligands in a one-step spin-coating route. The multiple ammonium ligands constrain the growth of CsPbBrxI3-x nanograins. Such CsPbBrxI3-x thin films benefit from quantum confinement. The corresponding CsPbBrxI3-x LEDs, adopting a conventional LED structure of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/CsPbBrxI3-x/[6, 6]-phenyl C61 butyric acid methyl ester (PCBM)/bathocuproine (BCP)/Al, emit pure-red color at Commission Internationale de l’éclairage (CIE) coordinates of (0.709, 0.290), (0.711, 0.289), etc., which represent the highest color-purity for reported pure-red perovskite LEDs and meet the Rec. 2020 requirement at CIE (0.708, 0.292) very well. The CsPbBrxI3-x LED shows a low turn-on voltage of 1.6 V, maximum external quantum efficiency of 8.94%, high luminance of 2,859 cdm−2, and good color stability under bias.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Cao, Y.; Wang, N. N.; Tian, H.; Guo, J. S.; Wei, Y. Q.; Chen, H.; Miao, Y. F.; Zou, W.; Pan, K.; He, Y. R. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253.

    Google Scholar 

  2. [2]

    Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.

    Google Scholar 

  3. [3]

    Liu, Y.; Cui, J. Y.; Du, K.; Tian, H.; He, Z. F.; Zhou, Q. H.; Yang, Z. L.; Deng, Y. Z.; Chen, D.; Zuo, X. B. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nano-structures. Nat. Photonics 2019, 13, 760–764.

    CAS  Google Scholar 

  4. [4]

    Zhao, X. F.; Tan, Z. K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 2020, 14, 215–218.

    CAS  Google Scholar 

  5. [5]

    Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

    CAS  Google Scholar 

  6. [6]

    Yang, J. N.; Song, Y.; Yao, J. S.; Wang, K. H.; Wang, J. J.; Zhu, B. S.; Yao, M. M.; Rahman, S. U.; Lan, Y. F.; Fan, F. J. et al. Potassium bromide surface passivation on CsPbI3–xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 2020, 142, 2956–2967.

    CAS  Google Scholar 

  7. [7]

    Ke, Y.; Wang, N. N.; Kong, D. C; Cao, Y.; He, Y. R; Zhu, L.; Wang, Y. M.; Xue, C.; Peng, Q. M.; Gao, F. et al. Defect passivation for red perovskite light-emitting diodes with improved brightness and stability. J. Phys. Chem. Lett. 2019, 10, 380–385.

    Google Scholar 

  8. [8]

    Steele, J. A.; Jin, H. D.; Dovgaliuk, I.; Berger, R. F.; Braeckevelt, T.; Yuan, H. F.; Martin, C.; Solano, E.; Lejaeghere, K.; Rogge, S. M. J. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 2019, 365, 679–684.

    CAS  Google Scholar 

  9. [9]

    Miao, Y. F.; Ke, Y.; Wang, N. N.; Zou, W.; Xu, M. M.; Cao, Y.; Sun, Y.; Yang, R.; Wang, Y.; Tong, Y. F. et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 2019, 10, 3624.

    Google Scholar 

  10. [10]

    Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T. Y.; Kan, M.; Li, Y. W.; Zhang, L. J.; Wang, X. T.; Yang, Y. G.; Gao, X. Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 2019, 365, 591–595.

    CAS  Google Scholar 

  11. [11]

    Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

    CAS  Google Scholar 

  12. [12]

    Wang, Y.; Zhang, T.; Xu, F.; Li, Y. H.; Zhao, Y. X. A facile low temperature fabrication of high performance CsPbI2Br all-inorganic perovskite solar cells. Solar RRL 2018, 2, 1700180.

    Google Scholar 

  13. [13]

    Ma, Q. S.; Huang, S. J.; Wen, X. M.; Green, M. A.; Ho-Baillie, A. W. Y. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy. Mater. 2016, 6, 1502202.

    Google Scholar 

  14. [14]

    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    CAS  Google Scholar 

  15. [15]

    Li, G. P.; Huang, J. S.; Li, Y. Q.; Tang, J. X.; Jiang, Y. Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Res. 2019, 12, 109–114.

    Google Scholar 

  16. [16]

    Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

    Google Scholar 

  17. [17]

    Kim, Y. H.; Wolf, C.; Kim, Y. T.; Cho, H.; Kwon, W.; Do, S.; Sadhanala, A.; Park, C. G.; Rhee, S. W.; Im, S. H. et al. Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size. ACS Nano 2017, 11, 6586–6593.

    CAS  Google Scholar 

  18. [18]

    Zheng, W. L.; Li, Z. C.; Zhang, C. Y.; Wang, B.; Zhang, Q. G.; Wan, Q.; Kong, L.; Li, L. Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 2019, 12, 1461–1465.

    CAS  Google Scholar 

  19. [19]

    Han, B. N.; Cai, B.; Shan, Q. S.; Song, J. Z.; Li, J. H.; Zhang, F. J.; Chen, J. W.; Fang, T.; Ji, Q. M.; Xu, X. B. et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 2018, 28, 1804285.

    Google Scholar 

  20. [20]

    Shen, X. Y.; Zhang, Y.; Kershaw, S. V.; Li, T. S.; Wang, C. C.; Zhang, X. Y.; Wang, W. Y.; Li, D. G.; Wang, Y. H.; Lu, M. et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 2019, 19, 1552–1559.

    CAS  Google Scholar 

  21. [21]

    Yao, J. S.; Ge, J.; Wang, K. H.; Zhang, G. Z.; Zhu, B. S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S. H.; Yao, H. B. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069–2079.

    CAS  Google Scholar 

  22. [22]

    Lu, M.; Zhang, X. Y.; Zhang, Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 2018, 30, 1804691.

    Google Scholar 

  23. [23]

    Zhang, X. Y.; Sun, C.; Zhang, Y.; Wu, H.; Ji, C. Y.; Chuai, Y. H.; Wang, P.; Wen, S. P.; Zhang, C. F.; Yu, W. W. Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 2016, 7, 4602–4610.

    CAS  Google Scholar 

  24. [24]

    Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

    CAS  Google Scholar 

  25. [25]

    Zhu, R. D.; Luo, Z. Y.; Chen, H. W.; Dong, Y. J.; Wu, S. T. Realizing rec. 2020 color gamut with quantum dot displays. Opt. Express 2015, 23, 23680–23693.

    CAS  Google Scholar 

  26. [26]

    Chang, J.; Zhang, S. T.; Wang, N. N.; Sun, Y.; Wei, Y. Q.; Li, R. Z.; Yi, C.; Wang, J. P.; Huang, W. Enhanced performance of red perovskite light-emitting diodes through the dimensional tailoring of perovskite multiple quantum wells. J. Phys. Chem. Lett. 2018, 9, 881–886.

    CAS  Google Scholar 

  27. [27]

    Vashishtha, P.; Halpert, J. E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 2017, 29, 5965–5973.

    CAS  Google Scholar 

  28. [28]

    Samu, G. F.; Balog, Á.; De Angelis, F.; Meggiolaro, D.; Kamat, P. V.; Janáky, C. Electrochemical hole injection selectively expels iodide from mixed halide perovskite films. J. Am. Chem. Soc. 2019, 141, 10812–10820.

    CAS  Google Scholar 

  29. [29]

    Knight, A. J.; Wright, A. D.; Patel, J. B.; McMeekin, D. P.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 2019, 4, 75–84.

    CAS  Google Scholar 

  30. [30]

    He, Z. F.; Liu, Y.; Yang, Z. L.; Li, J.; Cui, J. Y.; Chen, D.; Fang, Z. S.; He, H. P.; Ye, Z. Z.; Zhu, H. M. et al. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photonics 2019, 6, 587–594.

    CAS  Google Scholar 

  31. [31]

    Xing, J.; Zhao, Y. B.; Askerka, M.; Quan, L. N.; Gong, X. W.; Zhao, W. J.; Zhao, J. X.; Tan, H. R.; Long, G. K.; Gao, L. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 2018, 9, 3541.

    Google Scholar 

  32. [32]

    Jiang, M. W.; Hu, Z. H.; Liu, Z. H.; Wu, Z. F.; Ono, L. K.; Qi, Y. B. Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett. 2019, 4, 2731–2738.

    CAS  Google Scholar 

  33. [33]

    Xiao, Z. G.; Kerner, R. A.; Tran, N.; Zhao, L. F.; Scholes, G. D.; Rand, B. P. Engineering perovskite nanocrystal surface termination for light-emitting diodes with external quantum efficiency exceeding 15%. Adv. Funct. Mater. 2019, 29, 1807284.

    Google Scholar 

  34. [34]

    Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108–115.

    CAS  Google Scholar 

  35. [35]

    Li, F. M.; Pei, Y. H.; Xiao, F.; Zeng, T. X.; Yang, Z.; Xu, J. J.; Sun, J.; Peng, B.; Liu, M. Z. Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites. Nanoscale 2018, 10, 6318–6322.

    CAS  Google Scholar 

  36. [36]

    Si, J. J.; Liu, Y.; He, Z. F.; Du, H.; Du, K.; Chen, D.; Li, J.; Xu, M. M.; Tian, H.; He, H. P. et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 2017, 11, 11100–11107.

    CAS  Google Scholar 

  37. [37]

    Xiao, Z. G.; Zhao, L. F.; Tran, N. L.; Lin, Y. L.; Silver, S. H.; Kerner, R. A.; Yao, N.; Kahn, A.; Scholes, G. D.; Rand, B. P. Mixed-halide perovskites with stabilized bandgaps. Nano Lett. 2017, 17, 6863–6869.

    CAS  Google Scholar 

  38. [38]

    Lin, H.; Mao, J.; Qin, M. C.; Song, Z. L.; Yin, W. J.; Lu, X. H.; Choy, W. C. H. Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale 2019, 11, 16907–16918.

    CAS  Google Scholar 

  39. [39]

    Shang, Y. Q.; Li, G.; Liu, W. M.; Ning, Z. J. Quasi-2D inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1801193.

    Google Scholar 

  40. [40]

    Tian, Y.; Zhou, C. K.; Worku, M.; Wang, X.; Ling, Y. C.; Gao, H. W.; Zhou, Y.; Miao, Y.; Guan, J. J.; Ma, B. W. Highly efficient spectrally stable red perovskite light-emitting diodes. Adv. Mater. 2018, 30, 1707093.

    Google Scholar 

  41. [41]

    Yang, Y.; Qin, H. Y.; Jiang, M. W.; Lin, L.; Fu, T.; Dai, X. L.; Zhang, Z. X.; Niu, Y.; Cao, H. J.; Jin, Y. Z. et al. Entropic ligands for nanocrystals: From unexpected solution properties to outstanding processability. Nano Lett. 2016, 16, 2133–2138.

    CAS  Google Scholar 

  42. [42]

    Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128–132.

    CAS  Google Scholar 

  43. [43]

    Chen, C. L.; Zhang, S. S.; Wu, S. H.; Zhang, W. J.; Zhu, H. M.; Xiong, Z. Z.; Zhang, Y. J.; Chen, W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819–35826.

    CAS  Google Scholar 

  44. [44]

    Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

    CAS  Google Scholar 

  45. [45]

    Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

    CAS  Google Scholar 

  46. [46]

    Wang, Q.; Shao, Y. C.; Dong, Q. F.; Xiao, Z. G.; Yuan, Y. B.; Huang, J. S. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 2014, 7, 2359–2365.

    CAS  Google Scholar 

  47. [47]

    Wang, J. P.; Wang, N. N.; Jin, Y. Z.; Si, J. J.; Tan, Z. K.; Du, H.; Cheng, L.; Dai, X. L.; Bai, S.; He, H. P. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 2015, 27, 2311–2316.

    CAS  Google Scholar 

  48. [48]

    Li, J. Q.; Shan, X.; Bade, S. G. R.; Geske, T.; Jiang, Q. L.; Yang, X.; Yu, Z. B. Single-layer halide perovskite light-emitting diodes with sub-band gap turn-on voltage and high brightness. J. Phys. Chem. Lett. 2016, 7, 4059–4066.

    CAS  Google Scholar 

  49. [49]

    Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

    CAS  Google Scholar 

  50. [50]

    Pradhan, S.; Dalmases, M.; Konstantatos, G. Origin of the below-bandgap turn-on voltage in light-emitting diodes and the high Voc in solar cells comprising colloidal quantum dots with an engineered density of states. J. Phys. Chem. Lett. 2019, 10, 3029–3034.

    CAS  Google Scholar 

  51. [51]

    Scheidt, R. A.; Atwell, C.; Kamat, P. V. Tracking transformative transitions: From CsPbBr3 nanocrystals to bulk perovskite films. ACS Mater. Lett. 2019, 1, 8–13.

    CAS  Google Scholar 

  52. [52]

    Zou, Y.; Yuan, Z.; Bai, S.; Gao, F.; Sun, B. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Mater. Today Nano 2019, 5, 100028.

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University (OIST), the OIST Proof of Concept (POC) Program, the OIST R&D Cluster Research Program, and the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research [KAKENHI] (No. JP18K05266).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yabing Qi.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Hu, Z., Ono, L.K. et al. CsPbBrxI3-x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 14, 191–197 (2021). https://doi.org/10.1007/s12274-020-3065-5

Download citation

Keywords

  • CsPbBrxI3-x thin film
  • nano-sized crystallites
  • surface termination
  • pure-red color
  • perovskite light-emitting diode
  • low turn-on voltage