Nickel phosphonate MOF as efficient water splitting photocatalyst


A novel microporous two-dimensional (2D) Ni-based phosphonate metal-organic framework (MOF; denoted as IEF-13) has been successfully synthesized by a simple and green hydrothermal method and fully characterized using a combination of experimental and computational techniques. Structure resolution by single-crystal X-ray diffraction reveals that IEF-13 crystallizes in the triclinic space group Pi having bi-octahedra nickel nodes and a photo/electroactive tritopic phosphonate ligand. Remarkably, this material exhibits coordinatively unsaturated nickel(II) sites, free–PO3H2 and–PO3H acidic groups, a CO2 accessible microporosity, and an exceptional thermal and chemical stability. Further, its in-deep optoelectronic characterization evidences a photoresponse suitable for photocatalysis. In this sense, the photocatalytic activity for challenging H2 generation and overall water splitting in absence of any co-catalyst using UV–Vis irradiation and simulated sunlight has been evaluated, constituting the first report for a phosphonate-MOF photocatalyst. IEF-13 is able to produce up to 2,200 µmol of H2 per gram using methanol as sacrificial agent, exhibiting stability, maintaining its crystal structure and allowing its recycling. Even more, 170 µmol of H2 per gram were produced using IEF-13 as photocatalyst in the absence of any co-catalyst for the overall water splitting, being this reaction limited by the O2 reduction. The present work opens new avenues for further optimization of the photocatalytic activity in this type of multifunctional materials.

This is a preview of subscription content, access via your institution.


  1. [1]

    Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

    Article  Google Scholar 

  2. [2]

    Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

    CAS  Article  Google Scholar 

  3. [3]

    Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021.

    CAS  Article  Google Scholar 

  4. [4]

    Zhou, H. C.; Kitagawa, S. Themed issues on metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5415–6172.

    CAS  Article  Google Scholar 

  5. [5]

    Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2011, 112, 782–835.

    Article  Google Scholar 

  6. [6]

    Ryder, M. R.; Tan, J. C. Nanoporous metal organic framework materials for smart applications. Mater. Sci. Technol. 2014, 30, 1598–1612.

    CAS  Article  Google Scholar 

  7. [7]

    Gagnon, K. J.; Perry, H. P.; Clearfield, A. Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev 2012, 112, 1034–1054.

    CAS  Article  Google Scholar 

  8. [8]

    Shearan, S. J. I.; Stock, N.; Emmerling, F.; Demel, J.; Wright, P. A.; Demadis, K. D.; Vassaki, M.; Costantino, F.; Vivani, R.; Sallard, S. et al. New directions in metal phosphonate and phosphinate chemistry. Crystals 2019, 9, 270.

    CAS  Article  Google Scholar 

  9. [9]

    De, S.; Zhang, J. G.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347.

    CAS  Article  Google Scholar 

  10. [10]

    An, Y.; Liu, Y Y; An, P. F.; Dong, J. C.; Xu, B. Y; Dai, Y; Qin, X. Y; Zhang, X. Y.; Whangbo, M. H.; Huang, B. B. NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 3036–3040.

    CAS  Article  Google Scholar 

  11. [11]

    Chen, H. F.; Yang, S. J.; Tsai, Z. H.; Hung, W. Y; Wang, T. C.; Wong, K. T. 1,3,5-Triazine derivatives as new electron transport-type host materials for highly efficient green phosphorescent OLEDs. J. Mater. Chem. 2009, 19, 8112–8118.

    CAS  Article  Google Scholar 

  12. [12]

    Taddei, M.; Costantino, F.; Marmottini, F.; Comotti, A.; Sozzani, P.; Vivani, R. The first route to highly stable crystalline microporous zirconium phosphonate metal-organic frameworks. Chem. Commun. 2014, 50, 14831–14834.

    CAS  Article  Google Scholar 

  13. [13]

    Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414–5445.

    CAS  Article  Google Scholar 

  14. [14]

    Shi, Y.; Yang, A. F.; Cao, C. S.; Zhao, B. Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coord. Chem. Rev. 2019, 390, 50–75.

    CAS  Article  Google Scholar 

  15. [15]

    Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 2019, 31, 1900617.

    CAS  Article  Google Scholar 

  16. [16]

    Carbonell, E.; Ramiro-Manzano, F.; Rodriguez, I.; Corma, A.; Meseguer, F.; García, H. Enhancement of TiO2 photocatalytic activity by structuring the photocatalyst film as photonic sponge. Photochem. Photobiol. Sci. 2008, 7, 931–935.

    CAS  Article  Google Scholar 

  17. [17]

    Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipinski, W.; Khalilpour, K. R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620.

    CAS  Article  Google Scholar 

  18. [18]

    Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

    CAS  Article  Google Scholar 

  19. [19]

    Li, H.; Sun, Y.; Yuan, Z. Y.; Zhu, Y. P.; Ma, T. Y. Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. 2018, 130, 3276–3281.

    Article  Google Scholar 

  20. [20]

    Remiro-Buenamañana, S.; Cabrero-Antonino, M.; Martínez-Guanter, M.; Álvaro, M.; Navalón, S.; García, H. Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Appl. Catal. B Environ. 2019, 254, 677–684.

    Article  Google Scholar 

  21. [21]

    Fiaz, M.; Athar, M. Modification of MIL-125(Ti) by incorporating various transition metal oxide nanoparticles for enhanced photocurrent during hydrogen and oxygen evolution reactions. ChemistrySelect 2019, 4, 8508–8515.

    CAS  Article  Google Scholar 

  22. [22]

    Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8.

    Article  Google Scholar 

  23. [23]

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.

    Article  Google Scholar 

  24. [24]

    Frenkel, D.; Smit, B. Understanding Molecular Simulation; Academic Press: San Diego, 2001.

    Google Scholar 

  25. [25]

    Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.

    CAS  Article  Google Scholar 

  26. [26]

    Abascal, J. L. F.; Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.

    CAS  Article  Google Scholar 

  27. [27]

    Salles, F.; Kolokolov, D. I.; Jobic, H.; Maurin, G.; Llewellyn, P. L.; Devic, T.; Serre, C.; Ferey, G. Adsorption and diffusion of H2 in the MOF type systems MIL-47(V) and MIL-53(Cr): A combination of microcalorimetry and QENS experiments with molecular simulations. J. Phys. Chem. C 2009, 113, 7802–7812.

    CAS  Article  Google Scholar 

  28. [28]

    Harris, J. G.; Yung, K. H. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 1995, 99, 12021–12024.

    CAS  Article  Google Scholar 

  29. [29]

    Stock, N. High-throughput investigations employing solvothermal syntheses. Microporous Mesoporous Mater. 2010, 129, 287–295.

    CAS  Article  Google Scholar 

  30. [30]

    Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155.

    CAS  Article  Google Scholar 

  31. [31]

    Frost, H.; Düren, T.; Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal–organic frameworks. J. Phys. Chem. B 2006, 110, 9565–9570.

    CAS  Article  Google Scholar 

  32. [32]

    Duan, J. G.; Higuchi, M.; Krishna, R.; Kiyonaga, T.; Tsutsumi, Y.; Sato, Y.; Kubota, Y.; Takata, M.; Kitagawa, S. High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy. Chem. Sci. 2014, 5, 660–666.

    CAS  Article  Google Scholar 

  33. [33]

    Chen, C.; Lee, Y. R.; Ahn, W. S. CO2 adsorption over metal-organic frameworks: A mini review. J. Nanosci. Nanotechnol. 2016, 16, 4291–4301.

    CAS  Article  Google Scholar 

  34. [34]

    Boudjema, L.; Long, J.; Salles, F.; Larionova, J.; Guari, Y.; Trens, P. A switch in the hydrophobic/hydrophilic gas-adsorption character of prussian blue analogues: An affinity control for smart gas sorption. Chem.—Eur. J. 2019, 25, 479–484.

    CAS  Google Scholar 

  35. [35]

    Salles, F.; Bourrelly, S.; Jobic, H.; Devic, T.; Guillerm, V.; Llewellyn, P.; Serre, C.; Ferey, G.; Maurin, G. Molecular insight into the adsorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF. J. Phys. Chem. C 2011, 115, 10764–10776.

    CAS  Article  Google Scholar 

  36. [36]

    Freedman, L. D.; Doak, G. O. The preparation and properties of phosphonic acids. Chem. Rev. 1957, 57, 479–523.

    CAS  Article  Google Scholar 

  37. [37]

    Wilkinson, G.; Gillard, R. D.; McCleverty, J. A. Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds; Pergamon Press: Oxford, 1987.

    Google Scholar 

  38. [38]

    Wang, C.; Liu, D. M.; Lin, W. B. Metal-organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 2013, 135, 13222–13234.

    CAS  Article  Google Scholar 

Download references


This work was supported by MOFseidon project (Retos project, PID2019-104228RB-I00, MICIU-AEI/FEDER, UE), and the Ramón Areces Foundation project H+MOFs. P. H. acknowledges the Spanish Ramón y Cajal Programme (2014-15039). S. N. thanks financial support by the Fundación Ramón Areces (XVIII Concurso Nacional para la Adjudicación de Ayudas a la Investigatión en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovatión y Universidades RTI2018–099482-A-I00 project and Generalitat Valenciana grupos de investigación consolidables 2019 (AICO/2019/214) project and Agència Valenciana de la Innovació (AVI, INNEST/2020/111) project. H. G. thanks financial support to the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo2017/083). In memory of our dear colleague, Prof. Emilio Morán, who recently passed away.

Author information



Corresponding authors

Correspondence to Hermenegildo García or Patricia Horcajada.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salcedo-Abraira, P., Vilela, S.M.F., Babaryk, A.A. et al. Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res. 14, 450–457 (2021).

Download citation


  • metal-organic framework
  • phosphonates
  • photocatalysis
  • water splitting