Synthesis of magnetic two-dimensional materials by chemical vapor deposition

Abstract

The development of magnetic two-dimensional (2D) materials in its infancy has generated an enormous amount of attention as it offers an ideal platform for the exploration of magnetic properties down to the 2D limit, paving the way for spintronic devices. Due to the nonnegligible advantages including time efficiency and simplified process, the facile bottom-up chemical vapor deposition (CVD) is regarded as a robust method to fabricate ultrathin magnetic nanosheets. Recently, some ultrathin magnets possessing fascinating properties have been successfully synthesized via CVD. Here, the recent researches toward magnetic 2D materials grown by CVD are systematically summarized with special emphasis on the fabrication methods. Then, heteroatoms doping and phase transition induced in CVD growth to bring or tune the magnetic properties in 2D materials are discussed. Characterizations and applications of these magnetic materials are also discussed and reviewed. Finally, some perspectives in need of urgent attention regarding the development of CVD-grown magnetic 2D materials are proposed.

References

  1. [1]

    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

    CAS  Google Scholar 

  2. [2]

    Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

    CAS  Google Scholar 

  3. [3]

    Viti, L.; Hu, J.; Coquillat, D.; Politano, A.; Consejo, C.; Knap, W.; Vitiello, M. S. Heterostructured hBN-BP-hBN nanodetectors at Terahertz frequencies. Adv. Mater. 2016, 28, 7390–7396.

    CAS  Google Scholar 

  4. [4]

    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Google Scholar 

  5. [5]

    Shulenburger, L.; Baczewski, A. D.; Zhu, Z.; Guan, J.; Tománek, D. The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 2015, 15, 8170–8175.

    CAS  Google Scholar 

  6. [6]

    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Google Scholar 

  7. [7]

    Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.

    CAS  Google Scholar 

  8. [8]

    Jiang, W.; Wang, X. D.; Chen, Y.; Wu, G. J.; Ba, K.; Xuan, N. N.; Sun, Y. Y.; Gong, P.; Bao, J. X.; Shen, H. et al. Larg-area high quality PtSe2 thin film with versatile polarity. InfoMat 2019, 1, 260–267.

    CAS  Google Scholar 

  9. [9]

    Chen, S.; Gao, J. F.; Srinivasan, B. M.; Zhang, Y. W. A kinetic Monte Carlo study for mono- and bi-layer growth of MoS2 during chemical vapor deposition. Acta Phys. -Chim. Sinica 2019, 35, 1119–1127.

    Google Scholar 

  10. [10]

    Cong, C. X.; Shang, J. Z.; Niu, L.; Wu, L. S.; Chen, Y.; Zou, C. J.; Feng, S.; Qiu, Z. J.; Hu, L. G.; Tian, P. F. et al. Anti-Stokes photoluminescence of van der Waals layered semiconductor PbI2. Adv. Opt. Mater. 2017, 5, 1700609.

    Google Scholar 

  11. [11]

    Guo, Y. G.; Saidi, W. A.; Qian, W. 2D halide Perovskite-based van der Waals heterostructures: Contact evaluation and performance modulation. 2D Mater. 2017, 4, 035009.

    Google Scholar 

  12. [12]

    Londero, E.; Schröder, E. Role of van der Waals bonding in the layered oxide V2O5: First-principles density-functional calculations. Phys. Rev. B 2010, 82, 054116.

    Google Scholar 

  13. [13]

    Zheng, Z. B.; Chen, J. N.; Wang, Y.; Wang, X. M.; Chen, X. B.; Liu, P. Y.; Xu, J. B.; Xie, W. G.; Chen, H. J.; Deng, S. Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 2018, 30, 1705318.

    Google Scholar 

  14. [14]

    Tang, Z. K.; Tong, C. J.; Geng, W.; Zhang, D. Y.; Liu, L. M. Two-dimensional Ni(OH)2-XS2 (X = Mo and W) heterostructures. 2D Mater. 2015, 2, 034014.

    Google Scholar 

  15. [15]

    Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

    Google Scholar 

  16. [16]

    Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.

    CAS  Google Scholar 

  17. [17]

    Li, S. M.; Tian, M. C.; Gao, Q. G.; Wang, M. F.; Li, T. Y.; Hu, Q. L.; Li, X. F.; Wu, Y. Q. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 2019, 18, 1091–1097.

    CAS  Google Scholar 

  18. [18]

    Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

    CAS  Google Scholar 

  19. [19]

    Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    CAS  Google Scholar 

  20. [20]

    Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

    CAS  Google Scholar 

  21. [21]

    Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258.

    CAS  Google Scholar 

  22. [22]

    Wang, Z.; Wang, P.; Wang, F.; Ye, J. F.; He, T.; Wu, F.; Peng, M.; Wu, P. S.; Chen, Y. F.; Zhong, F. et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2020, 30, 1907945.

    CAS  Google Scholar 

  23. [23]

    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    CAS  Google Scholar 

  24. [24]

    Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.

    CAS  Google Scholar 

  25. [25]

    Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Shan, J.; Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electronics 2019, 2, 159–163.

    Google Scholar 

  26. [26]

    Lin, X. Y.; Yang, W.; Wang, K. L.; Zhao, W. S. Two-dimensional spintronics for low-power electronics. Nat. Electronics 2019, 2, 274–283.

    CAS  Google Scholar 

  27. [27]

    Zhang, W.; Wong, P. K. J.; Zhu, R.; Wee, A. T. S. Van der Waals magnets: Wonder building blocks for two-dimensional spintronics? InfoMat 2019, 1, 479–495.

    CAS  Google Scholar 

  28. [28]

    González-Herrero, H.; Gómez-Rodríguez, J. M.; Mallet, P.; Moaied, M.; Palacios, J. J.; Salgado, C.; Ugeda, M. M.; Veuillen, J. Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441.

    Google Scholar 

  29. [29]

    Červenka, J.; Katsnelson, M. I.; Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 2009, 5, 840–844.

    Google Scholar 

  30. [30]

    Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O. V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674–678.

    CAS  Google Scholar 

  31. [31]

    Eremeev, S. V.; Otrokov, M. M.; Chulkov, E. V. New universal type of interface in the magnetic insulator/topological insulator heterostructures. Nano Lett. 2018, 18, 6521–6529.

    CAS  Google Scholar 

  32. [32]

    Hu, T.; Zhao, G. D.; Gao, H.; Wu, Y. B.; Hong, J. S.; Stroppa, A.; Ren, W. Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect. Phys. Rev. B 2020, 101, 125401.

    CAS  Google Scholar 

  33. [33]

    Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

    CAS  Google Scholar 

  34. [34]

    Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    CAS  Google Scholar 

  35. [35]

    Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

    CAS  Google Scholar 

  36. [36]

    O’Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125–3131.

    Google Scholar 

  37. [37]

    Kang, L. X.; Ye, C.; Zhao, X. X.; Zhou, X. Y.; Hu, J. X.; Li, Q.; Liu, D.; Das, C.; Yang, J. F.; Hu, D. Y. et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun. 2020, 11, 3729.

    CAS  Google Scholar 

  38. [38]

    Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    CAS  Google Scholar 

  39. [39]

    Van Bruggen, C. F.; Haas, C. Magnetic susceptibility and electrical properties of VSe2 single crystals. Solid State Commun. 1976, 20, 251–254.

    CAS  Google Scholar 

  40. [40]

    Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

    CAS  Google Scholar 

  41. [41]

    Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    CAS  Google Scholar 

  42. [42]

    Huang, B., Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

    CAS  Google Scholar 

  43. [43]

    Chen, W.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

    CAS  Google Scholar 

  44. [44]

    Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

    CAS  Google Scholar 

  45. [45]

    Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. O.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.

    CAS  Google Scholar 

  46. [46]

    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. D.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    CAS  Google Scholar 

  47. [47]

    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    CAS  Google Scholar 

  48. [48]

    Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    CAS  Google Scholar 

  49. [49]

    Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.

    Google Scholar 

  50. [50]

    Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    CAS  Google Scholar 

  51. [51]

    Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

    CAS  Google Scholar 

  52. [52]

    Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.

    Google Scholar 

  53. [53]

    Wang, Q. S.; Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Safdar, M.; Zhan, X. Y.; Wang, F. M.; Cheng, Z. Z.; He, J. van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett. 2015, 15, 1183–1189.

    CAS  Google Scholar 

  54. [54]

    Zhu, D. D.; Xia, J.; Wang, L.; Li, X. Z.; Tian, L. F.; Meng, X. M. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. Nanoscale 2016, 8, 11375–11379.

    CAS  Google Scholar 

  55. [55]

    Ma, H. F.; Wan, Z.; Li, J.; Wu, R. X.; Zhang, Z. W.; Li, B.; Zhao, B.; Qian, Q.; Liu, Y.; Xia, Q. L. et al. Phase-tunable synthesis of ultrathin layered tetragonal CoSe and nonlayered hexagonal CoSe nanoplates. Adv. Mater. 2019, 31, 1900901.

    Google Scholar 

  56. [56]

    Zhou, S. S.; Wang, R. Y.; Han, J. B.; Wang, D. L.; Li, H. Q.; Gan, L.; Zhai, T. Y. Ultrathin non-van der Waals magnetic Rhombohedral Cr2S3: Space-confined chemical vapor deposition synthesis and raman scattering investigation. Adv. Funct. Mater. 2019, 29, 1805880.

    Google Scholar 

  57. [57]

    Li, J.; Zhao, B.; Chen, P.; Wu, R. X.; Li, B.; Xia, Q. L.; Guo, G. H.; Luo, J.; Zang, K. T.; Zhang, Z. W. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 2018, 30, 1801043.

    Google Scholar 

  58. [58]

    Hardy, W. J.; Yuan, J. T.; Guo, H.; Zhou, P. P.; Lou, J.; Natelson, D. Thickness-dependent and magnetic-field-driven suppression of antiferromagnetic order in thin V5S8 single crystals. ACS Nano 2016, 10, 5941–5946.

    CAS  Google Scholar 

  59. [59]

    Xue, Y. Z.; Zhang, Y.; Wang, H. C.; Lin, S. H.; Li, Y. Y.; Dai, J. Y.; Lau, S. P. Thickness-dependent magnetotransport properties in 1T VSe2 single crystals prepared by chemical vapor deposition. Nanotechnology 2020, 31, 145712.

    CAS  Google Scholar 

  60. [60]

    Yuan, J. T.; Balk, A.; Guo, H.; Fang, Q. Y.; Patel, S.; Zhao, X. H.; Terlier, T.; Natelson, D.; Crooker, S.; Lou, J. Room-temperature magnetic order in air-stable ultrathin iron oxide. Nano Lett. 2019, 19, 3777–3781.

    CAS  Google Scholar 

  61. [61]

    Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    CAS  Google Scholar 

  62. [62]

    Liu, H. T.; Xue, Y. Z.; Shi, J. A.; Guzman, R. A.; Zhang, P. P.; Zhou, Z.; He, Y. G.; Bian, C.; Wu, L. M.; Ma, R. S. et al. Observation of the kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett. 2019, 19, 8572–8580.

    CAS  Google Scholar 

  63. [63]

    Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

    Google Scholar 

  64. [64]

    Cui, F. F.; Zhao, X. X.; Xu, J. J.; Tang, B.; Shang, Q. Y.; Shi, J. P.; Huan, Y. H.; Liao, J. H.; Chen, Q.; Hou, Y. L. et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 2020, 32, 1905896.

    CAS  Google Scholar 

  65. [65]

    Chu, J. W.; Zhang, Y.; Wen, Y.; Qiao, R. X.; Wu, C. C.; He, P.; Yin, L.; Cheng, R. Q.; Wang, F.; Wang, Z. X. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 2019, 19, 2154–2161.

    CAS  Google Scholar 

  66. [66]

    Zhang, Y.; Chu, J. W.; Yin, L.; Shifa, T. A.; Cheng, Z. Z.; Cheng, R. Q.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 2019, 31, 1900056.

    Google Scholar 

  67. [67]

    Wang, X. G.; Zhou, Z.; Zhang, P.; Zhang, S. Q.; Ma, Y.; Yang, W. W.; Wang, H.; Li, B. X.; Meng, L. J.; Jiang, H. N. et al. Thickness-controlled synthesis of CoX2 (X = S, Se, and Te) single crystalline 2D layers with linear magnetoresistance and high conductivity. Chem. Mater. 2020, 32, 2321–2329.

    CAS  Google Scholar 

  68. [68]

    Liu, H. T.; Bao, L. H.; Zhou, Z.; Che, B. Y.; Zhang, R. Z.; Bian, C.; Ma, R. S.; Wu, L. M.; Yang, H. F.; Li, J. J. et al. Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett. 2019, 19, 4551–4559.

    CAS  Google Scholar 

  69. [69]

    Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.

    Google Scholar 

  70. [70]

    Lee, D. J.; Lee, Y.; Kwon, Y. H.; Choi, S. H.; Yang, W.; Kim, D. Y.; Lee, S. Room-temperature ferromagnetic ultrathin α-MoO3: Te nanoflakes. ACS Nano 2019, 13, 8717–8724.

    CAS  Google Scholar 

  71. [71]

    Xu, H. J.; Wei, J. W.; Zhou, H. A.; Feng, J. F.; Xu, T.; Du, H. F.; He, C. L.; Huang, Y.; Zhang, J. W.; Liu, Y. Z. et al. High spin hall conductivity in large-area type-II dirac semimetal PtTe2. Adv. Mater. 2020, 32, 2000513.

    CAS  Google Scholar 

  72. [72]

    Yun, S. J.; Duong, D. L.; Ha, D. M.; Singh, K.; Phan, T. L.; Choi, W.; Kim, Y. M.; Lee, Y. H. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076.

    CAS  Google Scholar 

  73. [73]

    Wang, L. B.; Xu, C.; Liu, Z. B.; Chen, L.; Ma, X. L.; Cheng, H. M.; Ren, W. C.; Kang, N. Magnetotransport properties in high-quality ultrathin two-dimensional superconducting Mo2C crystals. ACS Nano 2016, 10, 4504–4510.

    CAS  Google Scholar 

  74. [74]

    Qi, J. S.; Li, X.; Chen, X. F.; Hu, K. G. Strain tuning of magnetism in Mn doped MoS2 monolayer. J. Phys.: Condens. Matter 2014, 26, 256003.

    Google Scholar 

  75. [75]

    Fan, X. L.; An, Y. R.; Guo, W. J. Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res. Lett. 2016, 11, 154.

    Google Scholar 

  76. [76]

    Mishra, R.; Zhou, W.; Pennycook, S. J.; Pantelides, S. T.; Idrobo, J. C. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys. Rev. B 2013, 88, 144409.

    Google Scholar 

  77. [77]

    Li, Q.; Zhao, X. X.; Deng, L. J.; Shi, Z. T.; Liu, S.; Wei, Q. L.; Zhang, L. B.; Cheng, Y. C.; Zhang, L.; Lu, H. P. et al. Enhanced valley zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 2020, 14, 4636–4645.

    CAS  Google Scholar 

  78. [78]

    Zhou, J. D.; Lin, J. H.; Sims, H.; Jiang, C. Y.; Cong, C. X.; Brehm, J. A.; Zhang, Z. W.; Niu, L.; Chen, Y.; Zhou, Y. et al. Synthesis of Co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater. 2020, 32, 1906536.

    CAS  Google Scholar 

  79. [79]

    Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

    CAS  Google Scholar 

  80. [80]

    Kochat, V.; Apte, A.; Hachtel, J. A.; Kumazoe, H.; Krishnamoorthy, A.; Susarla, S.; Idrobo, J. C.; Shimojo, F.; Vashishta, P.; Kalia, R. et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 2017, 29, 1703754.

    Google Scholar 

  81. [81]

    Duan, H. L.; Guo, P.; Wang, C.; Tan, H.; Hu, W.; Yan, W. S.; Ma, C.; Cai, L.; Song, L.; Zhang, W. H. et al. Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun. 2019, 10, 1584.

    Google Scholar 

  82. [82]

    Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

    CAS  Google Scholar 

  83. [83]

    Xu, X. L.; Han, B.; Liu, S.; Yang, S. Q.; Jia, X. H.; Xu, W. J.; Gao, P.; Ye, Y.; Dai, L. Atomic-precision repair of a few-layer 2H-MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface. Adv. Mater. 2020, 32, 2000236.

    CAS  Google Scholar 

  84. [84]

    Zhao, S. H.; Hotta, T.; Koretsune, T.; Watanabe, K.; Taniguchi, T.; Sugawara, K.; Takahashi, T.; Shinohara, H.; Kitaura, R. Two-dimensional metallic NbS2: Growth, optical identification and transport properties. 2D Mater. 2016, 3, 025027.

    Google Scholar 

  85. [85]

    Guillamón, I.; Suderow, H.; Vieira, S.; Cario, L.; Diener, P.; Rodière, P. Superconducting density of states and vortex cores of 2H-NbS2. Phys. Rev. Lett. 2008, 101, 166407.

    Google Scholar 

  86. [86]

    Sun, X. L.; Shi, B. N.; Wang, H. Y.; Lin, N.; Liu, S. D.; Yang, K. J.; Zhang, B. T.; He, J. L. Optical properties of 2D 3R phase niobium disulfide and its applications as a saturable absorber. Adv. Opt. Mater. 2020, 8, 1901181.

    CAS  Google Scholar 

  87. [87]

    Craco, L.; Leoni, S. Comparative study of tetragonal and hexagonal FeSe: An orbital-selective scenario. EPL 2010, 92, 67003.

    Google Scholar 

  88. [88]

    Mizuguchi, Y.; Tomioka, F.; Tsuda, S.; Yamaguchi, T.; Takano, Y. Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl. Phys. Lett. 2008, 93, 152505.

    Google Scholar 

  89. [89]

    Ma, F. J.; Ji, W.; Hu, J. P.; Lu, Z. Y.; Xiang, T. First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: Evidence for a bicollinear antiferromagnetic order. Phys. Rev. Lett. 2009, 102, 177003.

    Google Scholar 

  90. [90]

    Parker, D. S. Strong 3D and 1D magnetism in hexagonal Fechalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe. Sci. Rep. 2017, 7, 3388.

    Google Scholar 

  91. [91]

    Park, C. S.; Shon, Y.; Lee, J.; Kim, E. K. Ferromagnetic properties of MoS2 film doped by Fe using chemical vapour deposition. Solid State Commun. 2020, 306, 113776.

    CAS  Google Scholar 

  92. [92]

    Niu, J. J.; Yan, B. M.; Ji, Q. Q.; Liu, Z. F.; Li, M. Q.; Gao, P.; Zhang, Y. F.; Yu, D. P.; Wu, X. S. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys. Rev. B 2017, 96, 075402.

    Google Scholar 

  93. [93]

    Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0306900) and the National Natural Science Foundation of China (No. 51872012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongji Gong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zhang, P., Wang, X. et al. Synthesis of magnetic two-dimensional materials by chemical vapor deposition. Nano Res. 14, 1789–1801 (2021). https://doi.org/10.1007/s12274-020-3020-5

Download citation

Keywords

  • two-dimensional materials
  • magnetic materials
  • chemical vapor deposition
  • properties tuning