Skip to main content

Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts


A series of carbon-based binary single-atom catalysts of Fe and Ni coordinated by nitrogen are fabricated using a glucose-chelating method. Depending on the Ni/Fe content, they exhibit a wide-range of controllable CO/H2 ratio from 0.14 to 10.86, which is meaningful to specific chemical processes. The durability of the catalyst is evaluated over an 8-hour period with no significant degradation of activity. The variation of the faradaic efficiency with Ni/Fe content is justified by density-functional-theory based calculation of the reaction barrier in both hydrogen evolution and CO2 reduction reactions.

This is a preview of subscription content, access via your institution.


  1. [1]

    Zhong, L. S.; Yu, F.; An, Y. L.; Zhao, Y. H.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016, 538, 84–87.

    Article  CAS  Google Scholar 

  2. [2]

    Hernández, S.; Farkhondehfal, M. A.; Sastre, F.; Makkee, M.; Saracco, G.; Russo, N. Syngas production from electrochemical reduction of CO2: Current status and prospective implementation. Green Chem. 2017, 19, 2326–2346.

    Article  Google Scholar 

  3. [3]

    Wilhelm, D. J.; Simbeck, D. R.; Karp, A. D.; Dickenson, R. L. Syngas production for gas-to-liquids applications: Technologies, issues and outlook. Fuel Process. Technol. 2001, 71, 139–148.

    Article  CAS  Google Scholar 

  4. [4]

    Ozin, G. A. Throwing new light on the reduction of CO2. Adv Mater 2015, 27, 1957–1963.

    Article  CAS  Google Scholar 

  5. [5]

    White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

    Article  CAS  Google Scholar 

  6. [6]

    Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

    Article  CAS  Google Scholar 

  7. [7]

    Wang, Z. L.; Li, C. L.; Yamauchi, Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 2016, 11, 373–391.

    Article  CAS  Google Scholar 

  8. [8]

    Wang, Y. F.; Li, Y. X.; Wang, Z. Y.; Allan, P.; Zhang, F. C.; Lu, Z. G. Reticular chemistry in electrochemical carbon dioxide reduction. Sci. China Mater. 2020, 63, 1113–1141.

    Article  CAS  Google Scholar 

  9. [9]

    Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  CAS  Google Scholar 

  10. [10]

    Han, J. Y.; An, P. F.; Liu, S. H.; Zhang, X. F.; Wang, D. W.; Yuan, Y.; Guo, J.; Qiu, X. Y.; Hou, K.; Shi, L. et al. Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 12711–12716.

    Article  CAS  Google Scholar 

  11. [11]

    Yang, H. P.; Wu, Y.; Li, G D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

    Article  CAS  Google Scholar 

  12. [12]

    Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  13. [13]

    Zhang, J.; Chen, Z. L.; Liu, C.; Zhao, J.; Liu, S. L.; Rao, D. W.; Nie, A. M.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Sci. China Mater. 2020, 63, 249–257.

    Article  CAS  Google Scholar 

  14. [14]

    Li, F.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem., Int. Ed. 2017, 56, 505–509.

    Article  CAS  Google Scholar 

  15. [15]

    Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

    Article  CAS  Google Scholar 

  16. [16]

    Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

    Article  CAS  Google Scholar 

  17. [17]

    Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.

    Article  CAS  Google Scholar 

  18. [18]

    Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

    Article  CAS  Google Scholar 

  19. [19]

    Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

    Article  CAS  Google Scholar 

  20. [20]

    Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

    Article  CAS  Google Scholar 

  21. [21]

    Zhu, W. L.; Kattel, S.; Jiao, F.; Chen, J. G. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 2019, 9, 1802840.

    Article  CAS  Google Scholar 

  22. [22]

    Zhu, W. J.; Zhang, L.; Liu, S. H.; Li, A.; Yuan, X. T.; Hu, C. L.; Zhang, G.; Deng, W. Y.; Zang, K. T.; Luo, J. et al. Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew. Chem., Int. Ed. 2020, 59, 12664–12668.

    Article  CAS  Google Scholar 

  23. [23]

    Li, J. K.; Pršlja, P.; Shinagawa, T.; Fernández, A. J. M.; Krumeich, F.; Artyushkova, K.; Atanassov, P.; Zitolo, A.; Zhou, Y. C.; García-Muelas, R. et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 2019, 9, 10426–10439.

    Article  CAS  Google Scholar 

  24. [24]

    He, Q.; Liu, D.; Lee, J. H.; Liu, Y.; Xie, Z.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037.

    Article  CAS  Google Scholar 

  25. [25]

    Lee, J. H.; Lee, H. K.; Chun, D. H.; Choi, H.; Rhim, G. B.; Youn, M. H.; Jeong, H.; Kang, S. W.; Yang, J. I.; Jung, H. et al. Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis. Nano Res. 2019, 12, 2568–2575.

    Article  CAS  Google Scholar 

  26. [26]

    Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  27. [27]

    Tian, S. B.; Hu, M., Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2020, DOI:

  28. [28]

    Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  29. [29]

    Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

    Article  CAS  Google Scholar 

  30. [30]

    Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

    Article  CAS  Google Scholar 

  31. [31]

    Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

    Article  CAS  Google Scholar 

  32. [32]

    Pan, F. P.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B Environ. 2018, 226, 463–472.

    Article  CAS  Google Scholar 

  33. [33]

    Jiao, J. P.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

    Article  CAS  Google Scholar 

  34. [34]

    Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

    Article  CAS  Google Scholar 

  35. [35]

    Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

    Article  CAS  Google Scholar 

  36. [36]

    Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944.

    Article  CAS  Google Scholar 

  37. [37]

    Artyushkova, K.; Kiefer, B.; Halevi, B.; Knop-Gericke, A.; Schlogl, R.; Atanassov, P. Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem. Commun. 2013, 49, 2539–2541.

    Article  CAS  Google Scholar 

  38. [38]

    Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electro-catalysis. ACS Nano 2011, 5, 4350–4358.

    Article  CAS  Google Scholar 

  39. [39]

    Wang, S. D.; He, Q.; Wang, C. D.; Jiang, H. L.; Wu, C. Q.; Chen, S. M.; Zhang, G.; Song, L. Active sites engineering toward superior carbon-based oxygen reduction catalysts via confinement pyrolysis. Small 2018, 14, 1800128.

    Article  CAS  Google Scholar 

  40. [40]

    Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y.; Yang, J. L.; Yao, T.; Wei, S. Q. Identification of singleatom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    Article  CAS  Google Scholar 

  41. [41]

    Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.

    Article  CAS  Google Scholar 

Download references


This work was financially supported by the Natural Science Foundation of Tianjin, China (No. 18JCYBJC20600) and Institute of Energy, Hefei Comprehensive National Science Center (No. 19KZS207).

Author information



Corresponding author

Correspondence to Shi Hu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Hu, Z., Gu, L. et al. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 13, 3206–3211 (2020).

Download citation


  • CO2 reduction
  • syngas
  • binary single-atom catalyst
  • electrocatalysis