Morphology and strain control of hierarchical cobalt oxide nanowire electrocatalysts via solvent effect

Abstract

Designing highly efficient and low-cost electrocatalysts for oxygen evolution reaction is important for many renewable energy applications. In particular, strain engineering has been demonstrated as a powerful strategy to enhance the electrochemical performance of catalysts; however, the required complex catalyst preparation process restricts the implementation of strain engineering. Herein, we report a simple self-template method to prepare hierarchical porous Co3O4 nanowires (PNWs) with tunable compressive strain via thermal-oxidation-transformation of easily prepared oxalic acid-cobalt nitrate (Co(NO3)2) composite nanowires. Based on the complementary theoretical and experimental studies, the selection of proper solvents in the catalyst preparation is not only vital for the hierarchical structural evolution of Co3O4 but also for regulating their compressive surface strain. Because of the rich surface active sites and optimized electronic Co d band centers, the PNWs exhibit the excellent activity and stability for oxygen evolution reaction, delivering a low overpotential of 319 mV at 10 mA·cm−2 in 1 M KOH with a mass loading 0.553 mg·cm−2, which is even better than the noble metal catalyst of RuO2. This work provides a cost-effective example of porous Co3O4 nanowire preparation as well as a promising method for modification of surface strain for the enhanced electrochemical performance.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    CAS  Google Scholar 

  2. [2]

    Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  3. [3]

    Zhao, Z. J.; Liu, S. H.; Zha, S. J.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

    Google Scholar 

  4. [4]

    Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

    CAS  Google Scholar 

  5. [5]

    Wei, Q. L.; Xiong, F. Y.; Tan, S. H.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300–1602338.

    Google Scholar 

  6. [6]

    Xu, C. L.; Zhao, Y. Q.; Yang, G. W.; Li, F. S.; Li, H. L. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem. Commun. 2009, 48, 7575–7577.

    Google Scholar 

  7. [7]

    Liu, H.; Wexler, D.; Wang, G. X. One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries. J. Alloys Compd. 2009, 487, 24–27.

    Google Scholar 

  8. [8]

    Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

    CAS  Google Scholar 

  9. [9]

    Lu, X. H.; Yu, M. H.; Zhai, T.; Wang, G. M.; Xie, S. L.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013, 13, 2628–2633.

    CAS  Google Scholar 

  10. [10]

    Bilousov, O. V.; Geaney, H.; Carvajal, J. J.; Zubialevich, V Z.; Parbrook, P. J.; Giguère, A.; Drouin, D.; Díaz, F.; Aguiló, M.; O’Dwyer, C. Fabrication of p-type porous GaN on silicon and epitaxial GaN. Appl. Phys. Lett. 2013, 103, 112103–112108.

    Google Scholar 

  11. [11]

    Liu, H. J.; Jin, L. H.; He, P.; Wang, C. X.; Xia, Y. Y. Direct synthesis of mesoporous carbon nanowires in nanotubes using MnO2 nanotubes as a template and their application in supercapacitors. Chem. Commun. 2009, 6813–6815.

  12. [12]

    Li, W.; Zhang, F.; Dou, Y. Q.; Wu, Z. X.; Liu, H. J.; Qian, X. F.; Gu, D.; Xia, Y. Y.; Tu, B.; Zhao, D. Y. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 2011, 1, 382–386.

    CAS  Google Scholar 

  13. [13]

    Ling, T.; Zhang, T.; Ge, B. H.; Han, L. L.; Zheng, L. R.; Lin, F.; Xu, Z. R.; Hu, W. B.; Du, X. W.; Davey, K. et al. Well-dispersed nickel-and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater. 2019, 31, 1807771–1807778.

    Google Scholar 

  14. [14]

    Ling, T.; Da, P. F.; Zheng, X. L.; Ge, B. H.; Hu, Z. P.; Wu, M. Y.; Du, X. W.; Hu, W. B.; Jaroniec, M.; Qiao, S. Z. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 2018, 4, eaau6261.

    CAS  Google Scholar 

  15. [15]

    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    CAS  Google Scholar 

  16. [16]

    Guan, B. Y.; Yu, X. Y.; Wu, H. B.; Lou, X. W. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 2017, 29, 1703614–1703634.

    Google Scholar 

  17. [17]

    Tackett, B. M.; Sheng, W. C.; Chen, J. G Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 2017, 1, 253–263.

    CAS  Google Scholar 

  18. [18]

    Yu, L.; Yu, X. Y.; Lou, X. W. The design and synthesis of hollow micro-/nanostructures: Present and future trends. Adv. Mater. 2018, 30, 1800939–1800966.

    Google Scholar 

  19. [19]

    Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059–17073.

    CAS  Google Scholar 

  20. [20]

    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    CAS  Google Scholar 

  21. [21]

    Hammer, B.; Nerskov, J. K. Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    CAS  Google Scholar 

  22. [22]

    Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    CAS  Google Scholar 

  23. [23]

    Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509–1516.

    Google Scholar 

  24. [24]

    Chen, Y. B.; Li, H. Y.; Wang, J. X.; Du, Y. H.; Xi, S. B.; Sun, Y. M.; Sherburne, M.; Ager III, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572–582.

    CAS  Google Scholar 

  25. [25]

    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901–465931.

    CAS  Google Scholar 

  26. [26]

    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502–395521.

    Google Scholar 

  27. [27]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  28. [28]

    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119.

    Google Scholar 

  29. [29]

    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    CAS  Google Scholar 

  30. [30]

    Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A. et al. Reproducibility in density functional theory calculations of solids. Science 2016, 351, aad3000.

    Google Scholar 

  31. [31]

    Kaneti, Y. V.; Tang, J.; Salunkhe, R. R.; Jiang, X. C.; Yu, A. B.; Wu, K. C. W.; Yamauchi, Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017, 29, 1604898–1604938.

    Google Scholar 

  32. [32]

    Wei, R. J.; Fang, M.; Dong, G. F.; Lan, C. Y.; Shu, L.; Zhang, H.; Bu, X. M.; Ho, J. C. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl. Mater. Interfaces 2018, 10, 7079–7086.

    CAS  Google Scholar 

  33. [33]

    Lai, J. P.; Niu, W. X.; Luque, R.; Xu, G. B. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10, 240–267.

    CAS  Google Scholar 

  34. [34]

    Wei, Q. L.; Xiong, F. Y.; Tan, S. S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300–1602339.

    Google Scholar 

  35. [35]

    Ren, L.; Wang, P. P.; Han, Y. S.; Hu, C. W.; Wei, B. Q. Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Chem. Phys. Lett. 2009, 476, 78–83.

    CAS  Google Scholar 

  36. [36]

    Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743.

    CAS  Google Scholar 

  37. [37]

    Cai, Z. Y.; Bu, X. M.; Wang, P.; Ho, J. C.; Yang, J. H.; Wang, X. Y. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5069–5089.

    CAS  Google Scholar 

  38. [38]

    Tang, T.; Jiang, W. J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. Y.; Jin, S. F.; Gao, F.; Wan, L. J.; Hu, J. S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328.

    CAS  Google Scholar 

  39. [39]

    Bu, X. M.; Wei, R. J.; Gao, W.; Lan, C. Y.; Ho, J. C. A unique sandwich structure of a CoMnP/Ni2P/NiFe electrocatalyst for highly efficient overall water splitting. J. Mater. Chem. A 2019, 7, 12325–12332.

    CAS  Google Scholar 

  40. [40]

    Liang, X. G.; Dong, R. T.; Li, D. P.; Bu, X. M.; Li, F. Z.; Shu, L.; Wei, R. J.; Ho, J. C. Coupling of nickel boride and Ni(OH)2 nanosheets with hierarchical interconnected conductive porous structure synergizes the oxygen evolution reaction. ChemCatChem 2018, 10, 4555–4561.

    CAS  Google Scholar 

  41. [41]

    Anantharaj, S.; Kundu, S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 2019, 4, 1260–1264.

    CAS  Google Scholar 

  42. [42]

    Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616–6623.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the General Research Fund (CityU 11211317) and the Theme-Based Research Scheme (T42-103/16-N) of the Research Grants Council of Hong Kong SAR, China, the National Natural Science Foundation of China (No. 51672229), and the Science Technology and Innovation Committee of Shenzhen Municipality (No. JCYJ20170818095520778).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chi-Man Lawrence Wu or Johnny C. Ho.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bu, X., Liang, X., Egbo, K.O. et al. Morphology and strain control of hierarchical cobalt oxide nanowire electrocatalysts via solvent effect. Nano Res. 13, 3130–3136 (2020). https://doi.org/10.1007/s12274-020-2983-6

Download citation

Keywords

  • hierarchical structure
  • morphology control
  • compressive strain
  • solvent effect
  • oxygen evolution reaction