Skip to main content
Log in

Giant enhancement of photoluminescence quantum yield in 2D perovskite thin microplates by graphene encapsulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The optoelectronic performances of the layered materials are strongly dependent on the thickness of the samples due to the surface effect. As the size of the samples decreases to few nanometers, the surface depletion field and surface defect density are prominent arising from the large surface to volume ratio. For instance, thin two-dimensional (2D) organic-inorganic hybrid perovskite microplates usually exhibit a rather low photoluminescence quantum yield (PLQY), owning to the strong surface effect. Here, we report that the PLQY can be enhanced as large as 28 times in (iso-BA)2Pbl4 (BA = C4H9NH3) 2D perovskite thin microplates encapsulated by graphene, resulting in that the PLQY is more than 18% for the microplate with a thickness of 6.7 nm at 78 K. As the thickness of the 2D perovskite microplate increases, the enhancement is gradually reduced and finally vanishes. This observation is in striking contrast to that in monolayer transition metal dichalcogenides (TMDs), when the PLQY is quenched by covering a layer of graphene due to the efficient charge transfer. The enhancement of PLQY in 2D perovskites can be mainly ascribed to the reduced quantum confined Stark effect (QCSE) due to the reduced surface depletion field after covering graphene flake, resulting in the enhanced radiative recombination efficiency. Our findings provide a cost-effective approach to enhance the luminescence, which may pave the way toward high performance light emitting devices based on 2D perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blancon, J. C.; Stier, A. V.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Traoré, B.; Pedesseau, L.; Kepenekian, M.; Katsutani, F.; Noe, G. T. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun.2018, 9, 2254.

    Article  Google Scholar 

  2. Di, J.; Xiong, J.; Li, H. M.; Liu, Z. Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv. Mater.2018, 30, 1704548.

    Article  Google Scholar 

  3. Yaffe, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; Van Der Zande, A.; Owen, J. S.; Heinz, T. F. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B2015, 92, 045414.

    Article  Google Scholar 

  4. Zhang, Q.; Chu, L. Q.; Zhou, F.; Ji, W.; Eda, G. Excitonic properties of chemically synthesized 2D organic-inorganic hybrid perovskite nanosheets. Adv. Mater.2018, 30, 1704055.

    Article  Google Scholar 

  5. Wang, J.; Su, R.; Xing, J.; Bao, D.; Diederichs, C.; Liu, S.; Liew, T. C. H.; Chen, Z. H.; Xiong, Q. H. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano2018, 12, 8382–8389.

    Article  CAS  Google Scholar 

  6. Makarov, S.; Furasova, A.; Tiguntseva, E.; Hemmetter, A.; Berestennikov, A.; Pushkarev, A.; Zakhidov, A.; Kivshar, Y. Halide-perovskite resonant nanophotonics. Adv. Opt. Mater.2019, 7, 1800784.

    Article  Google Scholar 

  7. Leng, K.; Abdelwahab, I.; Verzhbitskiy, I.; Telychko, M.; Chu, L. Q.; Fu, W.; Chi, X.; Guo, N.; Chen, Z. H.; Chen, Z. X. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater.2018, 17, 908–914.

    Article  CAS  Google Scholar 

  8. Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature2018, 555, 231–236.

    Article  CAS  Google Scholar 

  9. Qi, X.; Zhang, Y. P.; Ou, Q. D.; Ha, S. T.; Qiu, C. W.; Zhang, H.; Cheng, Y. B.; Xiong, Q. H.; Bao, Q. L. Photonics and optoelectronics of 2D metal-halide perovskites. Small2018, 14, 1800682.

    Article  Google Scholar 

  10. Tu, Q.; Spanopoulos, I.; Hao, S. Q.; Wolverton, C.; Kanatzidis, M. G.; Shekhawat, G. S.; Dravid, V. P. Probing strain-induced band gap modulation in 2D hybrid organic-inorganic perovskites. ACS Energy Lett.2019, 4, 796–802.

    Article  CAS  Google Scholar 

  11. Krishna, A.; Gottis, S.; Nazeeruddin, M. K.; Sauvage, F. Mixed dimensional 2D/3D hybrid perovskite absorbers: The future of perovskite solar cells? Adv. Funct. Mater.2019, 29, 1806482.

    Article  Google Scholar 

  12. Li, W. C.; Fang, C.; Wang, H. Z.; Wang, S.; Li, J. Z.; Ma, J. Q.; Wang, J.; Luo, H. M.; Li, D. H. Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect. Nano Res.2019, 12, 2858–2865.

    Article  CAS  Google Scholar 

  13. Chen, W.; Andersson, T. G. Quantum-confined Stark shift for differently shaped quantum wells. Semicond. Sci. Technol.1992, 7, 828–836.

    Article  CAS  Google Scholar 

  14. Kim, Y.; Choi, D.; Woo, W. J.; Lee, J. B.; Ryu, G. H.; Lim, J. H.; Lee, S.; Lee, Z.; Im, S.; Ahn, J. H. et al. Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor. Appl. Surf. Sci.2019, 494, 591–599.

    Article  CAS  Google Scholar 

  15. Zhu, B. H.; Wang, F. F.; Cao, Y. W.; Wang, C.; Wang, J.; Gu, Y. Z. Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals. Appl. Phys. Lett.2016, 108, 252106.

    Article  Google Scholar 

  16. Koda, D. S.; Bechstedt, F.; Marques, M.; Teles, L. K. Trends on band alignments: Validity of Anderson’s rule in SnS2- and SnSe2-based van der Waals heterostructures. Phys. Rev. B2018, 97, 165402.

    Article  CAS  Google Scholar 

  17. Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater.2016, 28, 2852–2867.

    Article  CAS  Google Scholar 

  18. Wang, S.; Ma, J. Q.; Li, W. C.; Wang, J.; Wang, H. Z.; Shen, H. Z.; Li, J. Z.; Wang, J. Q.; Luo, H. M.; Li, D. H. Temperature-dependent band gap in two-dimensional perovskites: Thermal expansion interaction and electron-phonon interaction. J. Phys. Chem. Lett.2019, 10, 2546–2553.

    Article  CAS  Google Scholar 

  19. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; Santosh, K. C.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science2015, 350, 1065–1068.

    Article  CAS  Google Scholar 

  20. Narukawa, Y.; Saijou, S.; Kawakami, Y.; Fujita, S.; Mukai, T.; Nakamura, S. Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer. Appl. Phys. Lett.1999, 74, 558–560.

    Article  CAS  Google Scholar 

  21. Li, D. H.; Zhang, J.; Xiong, Q. H. Surface depletion induced quantum confinement in CdS nanobelts. ACS Nano2012, 6, 5283–5290.

    Article  CAS  Google Scholar 

  22. Chia, A. C. E.; LaPierre, R. R. Analytical model of surface depletion in GaAs nanowires. J. Appl. Phys.2012, 112, 063705.

  23. Lien, D. H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager III, J. W.; Yablonovitch, E.; Javey, A. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science2019, 364, 468–471.

    Article  CAS  Google Scholar 

  24. Li, D. H.; Zhang, J.; Zhang, Q.; Xiong, Q. H. Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: Exciton ionization, Franz-Keldysh, and Stark effects. Nano Lett.2012, 12, 2993–2999.

    Article  CAS  Google Scholar 

  25. Rothenberg, E.; Kazes, M.; Shaviv, E.; Banin, U. Electric field induced switching of the fluorescence of single semiconductor quantum rods. Nano Lett.2005, 5, 1581–1586.

    Article  CAS  Google Scholar 

  26. Gerosa, M.; Gygi, F.; Govoni, M.; Galli, G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater.2018, 17, 1122–1127.

    Article  CAS  Google Scholar 

  27. Luo, D. Y.; Su, R.; Zhang, W.; Gong, Q. H.; Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater.2020, 5, 44–60.

    Article  CAS  Google Scholar 

  28. Li, W. C.; Ma, J. Q.; Wang, H. Z.; Fang, C.; Luo, H. M.; Li, D. H. Biexcitons in 2D (iso-BA)2PbI4 perovskite crystals. Nanophotonics2020, 9, 2001–2006.

    Article  CAS  Google Scholar 

  29. Yang, A.; Blancon, J. C.; Jiang, W.; Zhang, H.; Wong, J.; Yan, E.; Lin, Y. R.; Crochet, J.; Kanatzidis, M. G.; Jariwala, D. et al. Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures. Nano Lett.2019, 19, 4852–4860.

    Article  Google Scholar 

  30. Hintermayr, V.A.; Polavarapu, L.; Urban, A. S.; Feldmann, J. Accelerated carrier relaxation through reduced coulomb screening in two-dimensional halide perovskite nanoplatelets. ACS Nano2018, 12, 10151–10158.

    Article  CAS  Google Scholar 

  31. Gao, Y.; Shi, E. Z.; Deng, S. B.; Shiring, S. B.; Snaider, J. M.; Liang, C.; Yuan, B.; Song, R. Y.; Janke, S. M.; Liebman-Peláez, A. et al. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem.2019, 11, 1151–1157.

    Article  CAS  Google Scholar 

  32. Zhou, F.; Abdelwahab, I.; Leng, K.; Loh, K. P.; Ji, W. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater.2019, 31, 1904155.

    Article  CAS  Google Scholar 

  33. Song, X. F.; Hu, J. L.; Zeng, H. B. Two-dimensional semiconductors: Recent progress and future perspectives. J. Mater. Chem. C2013, 1, 2952–2969.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Basic Research Program of China (No. 2018YFA0704403), the National Natural Science Foundation of China (No. 61674060) and Innovation Fund of WNLO. We thank Testing Center of Huazhong University of Science and Technology for the support in thickness measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehui Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ma, J., Cheng, X. et al. Giant enhancement of photoluminescence quantum yield in 2D perovskite thin microplates by graphene encapsulation. Nano Res. 14, 1980–1984 (2021). https://doi.org/10.1007/s12274-020-2971-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2971-x

Keywords

Navigation