Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM


Hydrogen energy is a resuscitated clean energy source and its sensitive detection in air is crucial due to its very low explosive limit. Metal oxide decorated with noble metal nanoparticles has been used for the enhancement of gas detection and exhibits superior sensitivity. Understanding the intrinsic mechanism of the detection and the enhancement mechanism is thus becoming a fundamental issue for the further development of novel metal/oxide compound gas-sensing materials. However, the correlation between the microstructural evolution, the charge transport and the complex sensing process has not yet been directly revealed and its atomic mechanism is still debatable. In this study, an Au/WO2.7 compound was synthesized and exhibited a strongly enhanced gas sensitivity to many reductive gases, especially H2. Aberration-corrected environmental transmission electron microscopy was used to investigate the atomic-scale microstructural evolution in situ during the reaction between H2 and Au/WO2.7 compound. Swing and sintering processes of the Au particles on the WO2.7 surface were observed under heating and gaseous environments, and no injection of hydrogen atoms was suggested. First principle calculations verified the swing and sintering processes, and they can be explained by the enhancement of H2 sensitivity.

This is a preview of subscription content, access via your institution.


  1. [1]

    Yin, X. T.; Zhou, W. D.; Li, J.; Wang, Q.; Wu, F. Y.; Dastan, D.; Wang, D.; Garmestani, H.; Wang, X. M.; ţălu, Ş. A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 2019, 805, 229–236.

    CAS  Article  Google Scholar 

  2. [2]

    Chen, L.; Tsang, S. C. Ag doped WO3-based powder sensor for the detection of NO gas in air. Sens. Actuators. B Chem. 2003, 89, 68–75.

    CAS  Article  Google Scholar 

  3. [3]

    Grisel, R. J. H.; Weststrate, C. J.; Goossens, A.; Crajé, M. W. J.; van der Kraan, A. M.; Nieuwenhuys, B. E. Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment. Catal. Today. 2002, 72, 123–132.

    CAS  Article  Google Scholar 

  4. [4]

    Huang, K.; Zhang, Q.; Yang, F.; He, D. Y. Ultraviolet photo-conductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281–287.

    CAS  Article  Google Scholar 

  5. [5]

    Ou, J. Z.; Ahmad, M. Z.; Latham, K.; Kalantar-zadeh, K.; Sberveglieri, G.; Wlodarski, W. Synthesis of the nanostructured WO3 via anodization at elevated temperature for H2 sensing applications. Proc. Eng. 2011, 25, 247–251.

    CAS  Article  Google Scholar 

  6. [6]

    Ta, N.; Liu, J. Y.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A. L.; Shen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 2012, 134, 20585–20588.

    CAS  Article  Google Scholar 

  7. [7]

    Ishida, T.; Kinoshita, N.; Okatsu, H.; Akita, T.; Takei, T.; Haruta, M. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew. Chem., Int. Ed. 2008, 47, 9265–9268.

    CAS  Article  Google Scholar 

  8. [8]

    Abad, A.; Corma, A.; García, H. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: The molecular reaction mechanism. Chem. -Eur. J. 2008, 14, 212–222.

    CAS  Article  Google Scholar 

  9. [9]

    Anisimov, O. V.; Gaman, V. I.; Maksimova, N. K.; Najden, Y. P.; Novikov, V. A.; Sevastyanov, E. Y.; Rudov, F. V.; Chernikov, E. V. Effect of gold on the properties of nitrogen dioxide sensors based on thin WO3 films. Semiconductors 2010, 44, 366–372.

    CAS  Article  Google Scholar 

  10. [10]

    Qiu, Y. C.; Xu, G L.; Kuang, Q.; Sun, S. G; Yang, S. H. Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Res. 2012, 5, 826–832.

    CAS  Article  Google Scholar 

  11. [11]

    Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J. Catal. 2000, 191, 192–199.

    CAS  Article  Google Scholar 

  12. [12]

    Faughnan, B. W.; Crandall, R. S.; Lampert, M. A. Model for the bleaching of WO3 electrochromic films by an electric field. Appl. Phys. Lett. 1975, 27, 275–277.

    CAS  Article  Google Scholar 

  13. [13]

    Amaniampong, P. N.; Li, K. X.; Jia, X. L.; Wang, B.; Borgna, A.; Yang, Y. H. Titania-supported gold nanoparticles as efficient catalysts for the oxidation of cellobiose to organic acids in aqueous medium. ChemCatChem 2014, 6, 2105–2114.

    CAS  Article  Google Scholar 

  14. [14]

    Lee, S. H., Cheong, H. M., Tracy, C. E., Mascarenhas, A., Benson, D. K, Deb, S. K. Raman spectroscopic studies of electrochromic a-WO3. Electrochim. Acta 1999, 44, 3111–3115.

    CAS  Article  Google Scholar 

  15. [15]

    Xiang, Q.; Meng, G. F.; Zhao, H. B.; Zhang, Y.; Li, H.; Ma, W. J.; Xu, J. Q. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys. Chem. C 2010, 114, 2049–2055.

    CAS  Article  Google Scholar 

  16. [16]

    Boudiba, A.; Roussel, P.; Zhang, C.; Olivier, M. G.; Snyders, R.; Debliquy, M. Sensing mechanism of hydrogen sensors based on palladium-loaded tungsten oxide (Pd-WO3). Sens. Actuators B Chem. 2013, 187, 84–93.

    CAS  Article  Google Scholar 

  17. [17]

    Tian, X. G.; Zhang, Y.; Yang, T. S. First-principles study of H2 dissociative adsorption reactions on WO3 surfaces. Acta Phys.—Chim. Sin. 2012, 28, 1063–1069.

    CAS  Article  Google Scholar 

  18. [18]

    Firkala, T.; Fórizs, B.; Drotár, E.; Tompos, A.; Tóth, A. L.; Varga-Josepovits, K.; László, K.; Leskelä, M.; Szilágyi, I. M. Influence of the support crystal structure of WO3/Au catalysts in CO oxidation. Catal. Lett. 2014, 144, 831–836.

    CAS  Article  Google Scholar 

  19. [19]

    Yuan, W. T.; Zhu, B. E.; Li, X. Y.; Hansen, T. W.; Ou, Y.; Fang, K.; Yang, H. S.; Zhang, Z.; Wagner, J. B.; Gao, Y. et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020, 367, 428–430.

    CAS  Article  Google Scholar 

  20. [20]

    Jia, C. L.; Lentzen, M.; Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 2003, 299, 870–873.

    CAS  Article  Google Scholar 

  21. [21]

    Sharma, R.; Chee, S. W.; Herzing, A.; Miranda, R.; Rez, P. Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures. Nano Lett. 2011, 11, 2464–2471.

    CAS  Article  Google Scholar 

  22. [22]

    Yue, Y. H., Yuchi, D., Guan, P. F., Xu, J., Guo, L., Liu, J. Y. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes. Nat. Commun. 2016, 7, 12251.

    CAS  Article  Google Scholar 

  23. [23]

    Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsee, H. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 2002, 295, 2053–2055.

    CAS  Article  Google Scholar 

  24. [24]

    Longo, A.; Liotta, L. F.; Di Carlo, G.; Giannici, F.; Venezia, A. M.; Martorana, A. Structure and the metal support interaction of the Au/Mn oxide catalysts. Chem. Mater. 2010, 22, 3952–3960.

    CAS  Article  Google Scholar 

  25. [25]

    Hammer, B.; Hansen, L. B.; Nerskov, J. K. Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

    Article  Google Scholar 

  26. [26]

    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Article  Google Scholar 

  27. [27]

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  28. [28]

    Loopstra, B. O., Rietveld, H. M. Further refinement of the structure of WO3. Acta Cryst. Sect. B 1969, 25, 1420–1421.

    CAS  Article  Google Scholar 

  29. [29]

    Albanese, E.; Di Valentin, C.; Pacchioni, G. H2O adsorption on WO3 and WO3-x(001) surfaces. ACS Appl. Mater. Interfaces 2017, 9, 23212–23221.

    CAS  Article  Google Scholar 

  30. [30]

    Ping, Y.; Goddard III, W. A.; Galli, G. A. Energetics and solvation effects at the photoanode/catalyst interface: Ohmic contact versus schottky barrier. J. Am. Chem. Soc. 2015, 137, 5264–5267.

    CAS  Article  Google Scholar 

  31. [31]

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    CAS  Article  Google Scholar 

  32. [32]

    Lupan, O.; Postica, V.; Wolff, N.; Su, J.; Labat, F.; Ciofini, I; Cavers, H.; Adelung, R.; Polonskyi, O; Faupel, F. et al. Low-temperature solution synthesis of Au-modified ZnO nanowires for highly efficient hydrogen nanosensors. ACS Appl. Mater. Interfaces 2019, 11, 32115–32126.

    CAS  Article  Google Scholar 

  33. [33]

    Dixon, R. A.; Williams, J. J.; Morris, D.; Rebane, J.; Jones, F. H.; Egdell, R. G.; Downes, S. W. Electronic states at oxygen deficient WO3(001) surfaces: A study by resonant photoemission. Surf. Sci. 1998, 399, 199–211.

    CAS  Article  Google Scholar 

  34. [34]

    Wang, F. G.; Di Valentin, C.; Pacchioni, G. DFT study of hydrogen adsorption on the monoclinic WO3 (001) surface. J. Phys. Chem. C 2012, 116, 10672–10679.

    CAS  Article  Google Scholar 

  35. [35]

    Ren, X. Y.; Zhang, S.; Li, C.; Li, S. F.; Jia, Y.; Cho, J. H. Catalytic activities of noble metal atoms on WO3 (001): Nitric oxide adsorption. Nanoscale Res. Lett. 2015, 10, 60.

    Article  Google Scholar 

Download references


This work was supported by grants from the National Natural Science Foundation of China (Nos. 51988101, 91860202 and 51872008), the Beijing Natural Science Foundation (No. Z180014), the “111” project under the DB18015 grant and the Beijing Outstanding Young Scientists Projects (No. BJJWZYJH01201910005018). The authors thank Dr. Dongchang Wu from Thermofisher Scientific Shanghai Nanoport for the useful discussion and assistance with Titan-ETEM and Titan-Themis.

Author information



Corresponding authors

Correspondence to Ang Li or Xiaodong Han.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hui, F., Li, C., Chen, Y. et al. Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Res. 13, 3019–3024 (2020). https://doi.org/10.1007/s12274-020-2966-7

Download citation


  • in situ environmental TEM
  • H2 sensing
  • Au/WO2.7
  • gas-solid interface