Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors

Abstract

Metal-oxide-semiconductor field effect transistors (MOSFET) based on two-dimensional (2D) semiconductors have attracted extensive attention owing to their excellent transport properties, atomically thin geometry, and tunable bandgaps. Besides improving the transistor performance of individual device, lots of efforts have been devoted to achieving 2D logic functions or integrated circuit towards practical application. In this review, we discussed the recent progresses of 2D-based logic circuit. We will first start with the different methods for realization of n-type metal-oxide-semiconductor (NMOS)-only (or p-type metal-oxide-semiconductor (PMOS)-only) logic circuit. Next, various device polarity control and complementary-metal-oxide-semiconductor (CMOS) approaches are summarized, including utilizing different 2D semiconductors with intrinsic complementary doping, charge transfer doping, contact engineering, and electrostatics doping. We will discuss the merits and drawbacks of each approach, and lastly conclude with a short perspective on the challenges and future developments of 2D logic circuit.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol.2011, 6, 147–150.

    CAS  Google Scholar 

  2. [2]

    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    CAS  Google Scholar 

  3. [3]

    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol.2014, 9, 768–779.

    CAS  Google Scholar 

  4. [4]

    Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater.2016, 1, 16052.

    CAS  Google Scholar 

  5. [5]

    Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev.2018, 47, 6388–6409.

    CAS  Google Scholar 

  6. [6]

    Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat2019, 1, 54–73.

    Google Scholar 

  7. [7]

    Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater.2014, 13, 1128–1134.

    CAS  Google Scholar 

  8. [8]

    Liu, Y.; Guo, J.; Wu, Y. C.; Zhu, E. B.; Weiss, N. O.; He, Q. Y.; Wu, H.; Cheng, H. C.; Xu, Y.; Shakir, I. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett.2016, 16, 6337–6342.

    CAS  Google Scholar 

  9. [9]

    Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science2016, 354, 99–102.

    CAS  Google Scholar 

  10. [10]

    Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. F. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun.2014, 5, 5143.

    CAS  Google Scholar 

  11. [11]

    Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature2020, 579, 368–374.

    CAS  Google Scholar 

  12. [12]

    Li, X. F.; Yu, Z. Q.; Xiong, X.; Li, T. Y.; Gao, T. T.; Wang, R. S.; Huang, R.; Wu, Y. Q. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv.2019, 5, eaau3194.

    Google Scholar 

  13. [13]

    Wikipedia. The International Technology Roadmap for Semiconductors [Online]. https://en.academic.ru/dic.nsf/enwiki/1561398 (accessed Apr 25, 2020).

  14. [14]

    English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett.2016, 16, 3824–3830.

    CAS  Google Scholar 

  15. [15]

    Yan, R. H.; Ourmazd, A.; Lee, K. F. Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans. Electron Dev.1992, 39, 1704–1710.

    CAS  Google Scholar 

  16. [16]

    Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature2018, 562, 254–258.

    CAS  Google Scholar 

  17. [17]

    Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G. D.; Zhou, X. J.; Wei, Z.; Xu, X. Z.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano2017, 11, 12001–12007.

    CAS  Google Scholar 

  18. [18]

    Wachter, S.; Polyushkin, D. K.; Bethge, O.; Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun.2017, 8, 14948.

    CAS  Google Scholar 

  19. [19]

    Zhang, Z. H.; Wang, Z. W.; Shi, T.; Bi, C.; Rao, F.; Cai, Y. M.; Liu, Q.; Wu, H. Q.; Zhou, P. Memory materials and devices: From concept to application. InfoMat2020, 2, 261–290.

    Google Scholar 

  20. [20]

    Yu, L. L.; El-Damak, D.; Radhakrishna, U.; Ling, X.; Zubair, A.; Lin, Y. X.; Zhang, Y. H.; Chuang, M. H.; Lee, Y. H.; Antoniadis, D. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett.2016, 16, 6349–6356.

    CAS  Google Scholar 

  21. [21]

    Cheng, Z. H.; Abuzaid, H.; Yu, Y. F.; Zhang, F.; Li, Y. L.; Noyce, S. G.; Williams, N. X.; Lin, Y. C.; Doherty, J. L.; Tao, C. G. et al. Convergent ion beam alteration of 2D materials and metal-2D interfaces. 2D Mater.2019, 6, 034005.

    CAS  Google Scholar 

  22. [22]

    Iberi, V.; Liang, L. B.; Ievlev, A. V.; Stanford, M. G.; Lin, M. W.; Li, X. F.; Mahjouri-Samani, M.; Jesse, S.; Sumpter, B. G.; Kalinin, S. V. et al. Nanoforging single layer MoSe2 through defect engineering with focused helium ion beams. Sci. Rep.2016, 6, 30481.

    CAS  Google Scholar 

  23. [23]

    Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N. et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions. Sci. Rep.2016, 6, 27276.

    CAS  Google Scholar 

  24. [24]

    Shi, W.; Kahn, S.; Jiang, L. L.; Wang, S. Y.; Tsai, H. Z.; Wong, D.; Taniguchi, T.; Watanabe, K.; Wang, F.; Crommie, M. F. et al. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron.2020, 3, 99–105.

    CAS  Google Scholar 

  25. [25]

    Bertolazzi, S.; Bonacchi, S.; Nan, G. J.; Pershin, A.; Beljonne, D.; Samori, P. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater.2017, 29, 1606760.

    Google Scholar 

  26. [26]

    Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol.2014, 9, 391–396.

    CAS  Google Scholar 

  27. [27]

    Sutter, E.; Huang, Y.; Komsa, H. P.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Sutter, P. Electron-beam induced transformations of layered tin dichalcogenides. Nano Lett.2016, 16, 4410–4416.

    CAS  Google Scholar 

  28. [28]

    Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano2011, 5, 9934–9938.

    CAS  Google Scholar 

  29. [29]

    Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater.2016, 28, 4111–4119.

    CAS  Google Scholar 

  30. [30]

    Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature2015, 520, 656–660.

    CAS  Google Scholar 

  31. [31]

    Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano2014, 8, 923–930.

    CAS  Google Scholar 

  32. [32]

    Wang, H.; Yu, L.; Lee, Y. H.; Fang, W.; Hsu, A.; Herring, P.; Chin, M.; Dubey, M.; Li, L. J.; Kong, J. et al. Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition. In Proceedings of 2012 International Electron Devices Meeting, San Francisco, CA, USA, 2012, pp 4.6.1–4.6.4.

  33. [33]

    Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature2018, 557, 696–700.

    CAS  Google Scholar 

  34. [34]

    Jung, Y.; Choi, M. S.; Nipane, A.; Borah, A.; Kim, B.; Zangiabadi, A.; Taniguchi, T.; Watanabe, K.; Yoo, W. J.; Hone, J. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron.2019, 2, 187–194.

    Google Scholar 

  35. [35]

    Choi, Y. K.; Asano, K.; Lindert, N.; Subramanian, V.; King, T. J.; Bokor, J.; Hu, C. M. Ultra-thin body SOI MOSFET for deep-subtenth micron era. In Proceedings of IEEE International Electron Devices Meeting 1999, Washington, DC, USA, 1999, pp 919–921.

  36. [36]

    Xu, H.; Zhang, H. M.; Guo, Z. X.; Shan, Y. W.; Wu, S. W.; Wang, J. L.; Hu, W. D.; Liu, H. Q.; Sun, Z. Z.; Luo, C. et al. High-performance wafer-scale MoS2 transistors toward practical application. Small2018, 14, 1803465.

    Google Scholar 

  37. [37]

    Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett.2015, 15, 3030–3034.

    CAS  Google Scholar 

  38. [38]

    Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A. Field-effect transistors built from all two-dimensional material components. ACS Nano2014, 8, 6259–6264.

    CAS  Google Scholar 

  39. [39]

    Chuang, H. J.; Tan, X. B.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M. C.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett.2014, 14, 3594–3601.

    CAS  Google Scholar 

  40. [40]

    Yu, L. L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y. X.; Dubey, M.; Kaxiras, E.; Kong, J.; Wang, H. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett.2014, 14, 3055–3063.

    CAS  Google Scholar 

  41. [41]

    Dathbun, A.; Kim, Y.; Kim, S.; Yoo, Y.; Kang, M. S.; Lee, C.; Cho, J. H. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett.2017, 17, 2999–3005.

    CAS  Google Scholar 

  42. [42]

    Zhao, M.; Ye, Y.; Han, Y. M.; Xia, Y.; Zhu, H. Y.; Wang, S. Q.; Wang, Y.; Muller, D. A.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol.2016, 11, 954–959.

    CAS  Google Scholar 

  43. [43]

    Ling, X.; Lin, Y. X.; Ma, Q.; Wang, Z. Q.; Song, Y.; Yu, L. L.; Huang, S. X.; Fang, W. J.; Zhang, X.; Hsu, A. L. et al. Parallel stitching of 2D materials. Adv. Mater.2016, 28, 2322–2329.

    CAS  Google Scholar 

  44. [44]

    Wu, R. X.; Tao, Q. Y.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Zhao, B.; Zhang, Z. W.; Ma, H. F.; Sun, G. Z. et al. van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater.2019, 29, 1806611.

    Google Scholar 

  45. [45]

    Xu, X. L.; Liu, S.; Han, B.; Han, Y. M.; Yuan, K.; Xu, W. J.; Yao, X. H.; Li, P.; Yang, S. Q.; Gong, W. T. et al. Scaling-up atomically thin coplanar semiconductor-metal circuitry via phase engineered chemical assembly. Nano Lett.2019, 19, 6845–6852.

    CAS  Google Scholar 

  46. [46]

    Zhang, Q.; Wang, X. F.; Shen, S. H.; Lu, Q.; Liu, X. Z.; Li, H. Y.; Zheng, J. Y.; Yu, C. P.; Zhong, X. Y.; Gu, L. et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron.2019, 2, 164–170.

    Google Scholar 

  47. [47]

    Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett.2012, 12, 4674–4680.

    CAS  Google Scholar 

  48. [48]

    Jeon, P. J.; Kim, J. S.; Lim, J. Y.; Cho, Y.; Pezeshki, A.; Lee, H. S.; Yu, S.; Min, S. W.; Im, S. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces2015, 7, 22333–22340.

    CAS  Google Scholar 

  49. [49]

    Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano2014, 8, 4033–4041.

    CAS  Google Scholar 

  50. [50]

    Pezeshki, A.; Hosseini Shokouh, S. H.; Jeon, P. J.; Shackery, I.; Kim, J. S.; Oh, I. K.; Jun, S. C.; Kim, H.; Im, S. Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano2016, 10, 1118–1125.

    CAS  Google Scholar 

  51. [51]

    Zhang, H.; Li, C.; Wang, J. L.; Hu, W. D.; Zhang, D. W.; Zhou, P. Complementary logic with voltage zero-loss and nano-Watt power via configurable MoS2/WSe2 gate. Adv. Function. Mater.2018, 28, 1805171.

    Google Scholar 

  52. [52]

    Yoo, H.; Hong, S.; On, S.; Ahn, H.; Lee, H. K.; Hong, Y. K.; Kim, S.; Kim, J. J. Chemical doping effects in multilayer MoS2 and its application in complementary inverter. ACS Appl. Mater. Interfaces2018, 10, 23270–23276.

    CAS  Google Scholar 

  53. [53]

    Srivastava, P. K.; Hassan, Y.; Gebredingle, Y.; Jung, J.; Kang, B.; Yoo, W. J.; Singh, B.; Lee, C. Van der Waals broken-gap p-n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces2019, 11, 8266–8275.

    CAS  Google Scholar 

  54. [54]

    Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater.2014, 13, 1135–1142.

    CAS  Google Scholar 

  55. [55]

    Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol.2014, 9, 1024–1030.

    CAS  Google Scholar 

  56. [56]

    Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science2017, 357, 788–792.

    CAS  Google Scholar 

  57. [57]

    Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev.2018, 47, 3129–3151.

    CAS  Google Scholar 

  58. [58]

    Lee, J.; Pak, S.; Lee, Y. W.; Park, Y.; Jang, A. R.; Hong, J.; Cho, Y.; Hou, B.; Lee, S.; Jeong, H. Y. et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano2019, 13, 13047–13055.

    CAS  Google Scholar 

  59. [59]

    Yeh, C. H.; Liang, Z. Y.; Lin, Y. C.; Chen, H. C.; Fan, T.; Ma, C. H.; Chu, Y. H.; Suenaga, K.; Chiu, P. W. Graphene-transition metal dichalcogenide heterojunctions for scalable and low-power complementary integrated circuits. ACS Nano2020, 14, 985–992.

    CAS  Google Scholar 

  60. [60]

    Chiu, M. H.; Tang, H. L.; Tseng, C. C.; Han, Y. M.; Aljarb, A.; Huang, J. K.; Wan, Y.; Fu, J. H.; Zhang, X. X.; Chang, W. H. et al. Metal-guided selective growth of 2D materials: Demonstration of a bottom-up CMOS inverter. Adv. Mater.2019, 31, e1900861.

  61. [61]

    Sachid, A. B.; Tosun, M.; Desai, S. B.; Hsu, C. Y.; Lien, D. H.; Madhvapathy, S. R.; Chen, Y. Z.; Hettick, M.; Kang, J. S.; Zeng, Y. P. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater.2016, 28, 2547–2554.

    CAS  Google Scholar 

  62. [62]

    Yu, W. J.; Li, Z.; Zhou, H. L.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater.2013, 12, 246–252.

    CAS  Google Scholar 

  63. [63]

    Choi, Y. J.; Kim, S.; Woo, H. J.; Song, Y. J.; Lee, Y.; Kang, M. S.; Cho, J. H. Remote gating of Schottky barrier for transistors and their vertical integration. ACS Nano2019, 13, 7877–7885.

    CAS  Google Scholar 

  64. [64]

    Liu, L. T.; Liu, Y.; Duan, X. F. Graphene-based vertical thin film transistors. Sci. China Inf. Sci. in press, DOI: https://doi.org/10.1007/s11432-020-2806-8.

  65. [65]

    Jin, Y.; Keum, D. H.; An, S. J.; Kim, J.; Lee, H. S.; Lee, Y. H. A van der Waals homojunction: Ideal p-n diode behavior in MoSe2. Adv. Mater.2015, 27, 5534–5540.

    CAS  Google Scholar 

  66. [66]

    Tang, B. S.; Yu, Z. G.; Huang, L.; Chai, J. W.; Wong, S. L.; Deng, J.; Yang, W. F.; Gong, H.; Wang, S. J.; Ang, K. W. et al. Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano2018, 12, 2506–2513.

    CAS  Google Scholar 

  67. [67]

    Laskar, M. R.; Nath, D. N.; Ma, L.; Lee, E. W.; Lee, C. H.; Kent, T.; Yang, Z. H.; Mishra, R.; Roldan, M. A.; Idrobo, J. C. et al. P-type doping of MoS2 thin films using Nb. Appl. Phys. Lett.2014, 104, 092104.

    Google Scholar 

  68. [68]

    Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett.2014, 14, 6976–6982.

    CAS  Google Scholar 

  69. [69]

    Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater.2016, 28, 9735–9743.

    CAS  Google Scholar 

  70. [70]

    Zhang, K. H.; Bersch, B. M.; Joshi, J.; Addou, R.; Cormier, C. R.; Zhang, C. X.; Xu, K.; Briggs, N. C.; Wang, K.; Subramanian, S. et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ Rhenium substitutional doping. Adv. Funct. Mater.2018, 28, 1706950.

    Google Scholar 

  71. [71]

    Zhang, X. J.; Shao, Z. B.; Zhang, X. H.; He, Y. Y.; Jie, J. S. Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater.2016, 28, 10409–10442.

    CAS  Google Scholar 

  72. [72]

    Zhao, P. D.; Kiriya, D.; Azcatl, A.; Zhang, C. X.; Tosun, M.; Liu, Y. S.; Hettick, M.; Kang, J. S.; McDonnell, S.; KC, S. et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano2014, 8, 10808–10814.

    CAS  Google Scholar 

  73. [73]

    Chang, Y. M.; Yang, S. H.; Lin, C. Y.; Chen, C. H.; Lien, C. H.; Jian, W. B.; Ueno, K.; Suen, Y. W.; Tsukagoshi, K.; Lin, Y. F. Reversible and precisely controllable p/n-type doping of MoTe2 transistors through electrothermal doping. Adv. Mater.2018, 30, 1706995.

    Google Scholar 

  74. [74]

    Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett.2013, 13, 1991–1995.

    CAS  Google Scholar 

  75. [75]

    Tosun, M.; Chuang, S.; Fang, H.; Sachid, A. B.; Hettick, M.; Lin, Y. J.; Zeng, Y. P.; Javey, A. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano2014, 8, 4948–4953.

    CAS  Google Scholar 

  76. [76]

    Qi, D. Y.; Han, C.; Rong, X. M.; Zhang, X. W.; Chhowalla, M.; Wee, A. T. S.; Zhang, W. J. Continuously tuning electronic properties of few-layer molybdenum ditelluride with in situ aluminum modification toward ultrahigh gain complementary inverters. ACS Nano2019, 13, 9464–9472.

    CAS  Google Scholar 

  77. [77]

    Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett.2016, 16, 2145–2151.

    CAS  Google Scholar 

  78. [78]

    Liao, W. G.; Wang, L.; Chen, L.; Wei, W.; Zeng, Z.; Feng, X.; Huang, L.; Tan, W. C.; Huang, X.; Ang, K. W. et al. Efficient and reliable surface charge transfer doping of black phosphorus via atomic layer deposited MgO toward high performance complementary circuits. Nanoscale2018, 10, 17007–17014.

    CAS  Google Scholar 

  79. [79]

    Luo, W.; Zhu, M. J.; Peng, G.; Zheng, X. M.; Miao, F.; Bai, S. X.; Zhang, X. A.; Qin, S. Q. Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv. Funct. Mater.2018, 28, 1704539.

    Google Scholar 

  80. [80]

    Lim, J. Y.; Pezeshki, A.; Oh, S.; Kim, J. S.; Lee, Y. T.; Yu, S.; Hwang, D. K.; Lee, G. H.; Choi, H. J.; Im, S. Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv. Mater.2017, 29, 1701798.

    Google Scholar 

  81. [81]

    Choi, M. S.; Qu, D. S.; Lee, D.; Liu, X. C.; Watanabe, K.; Taniguchi, T.; Yoo, W. J. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano2014, 8, 9332–9340.

    CAS  Google Scholar 

  82. [82]

    Li, H. M.; Lee, D.; Qu, D. S.; Liu, X. C.; Ryu, J.; Seabaugh, A.; Yoo, W. J. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun.2015, 6, 6564.

    CAS  Google Scholar 

  83. [83]

    Liu, X. C.; Qu, D. S.; Ryu, J.; Ahmed, F.; Yang, Z.; Lee, D.; Yoo, W. J. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater.2016, 28, 2345–2351.

    CAS  Google Scholar 

  84. [84]

    Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc.2014, 136, 7853–7856.

    CAS  Google Scholar 

  85. [85]

    Qu, D. S.; Liu, X. C.; Huang, M.; Lee, C.; Ahmed, F.; Kim, H.; Ruoff, R. S.; Hone, J.; Yoo, W. J. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater.2017, 29, 1606433.

    Google Scholar 

  86. [86]

    Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano2013, 7, 7795–7804.

    CAS  Google Scholar 

  87. [87]

    Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano2015, 9, 12115–12123.

    CAS  Google Scholar 

  88. [88]

    Najmaei, S.; Zou, X. L.; Er, D. Q.; Li, J. W.; Jin, Z. H.; Gao, W. L.; Zhang, Q.; Park, S.; Ge, L. H.; Lei, S. D. et al. Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett.2014, 14, 1354–1361.

    CAS  Google Scholar 

  89. [89]

    Stoeckel, M. A.; Gobbi, M.; Leydecker, T.; Wang, Y.; Eredia, M.; Bonacchi, S.; Verucchi, R.; Timpel, M.; Nardi, M. V.; Orgiu, E. et al. Boosting and balancing electron and hole mobility in single- and bilayer WSe2 devices via tailored molecular functionalization. ACS Nano2019, 13, 11613–11622.

    CAS  Google Scholar 

  90. [90]

    Kang, D. H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. S.; Jang, Y. H.; Lee, S.; Park, J. H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano2015, 9, 1099–1107.

    CAS  Google Scholar 

  91. [91]

    Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater.2015, 25, 4219–4227.

    CAS  Google Scholar 

  92. [92]

    Yu, L. L.; Zubair, A.; Santos, E. J. G.; Zhang, X.; Lin, Y. X.; Zhang, Y. H.; Palacios, T. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett.2015, 15, 4928–4934.

    CAS  Google Scholar 

  93. [93]

    Heo, K.; Jo, S. H.; Shim, J.; Kang, D. H.; Kim, J. H.; Park, J. H. Stable and reversible triphenylphosphine-based n-type doping technique for molybdenum disulfide (MoS2). ACS Appl. Mater. Interfaces2018, 10, 32765–32772.

    CAS  Google Scholar 

  94. [94]

    Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano2016, 10, 2128–2137.

    CAS  Google Scholar 

  95. [95]

    Li, X. F.; Lin, M. W.; Basile, L.; Hus, S. M.; Puretzky, A. A.; Lee, J.; Kuo, Y. C.; Chang, L. Y.; Wang, K.; Idrobo, J. C. et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater.2016, 28, 8240–8247.

    CAS  Google Scholar 

  96. [96]

    Huang, C.; Jin, Y. B.; Wang, W. W.; Tang, L.; Song, C. Y.; Xiu, F. X. Manganese and chromium doping in atomically thin MoS2. J. Semicond.2017, 38, 033004.

    Google Scholar 

  97. [97]

    Xu, E. Z.; Liu, H. M.; Park, K.; Li, Z.; Losovyj, Y.; Starr, M.; Werbianskyj, M.; Fertig, H. A.; Zhang, S. X. P-type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale2017, 9, 3576–3584.

    CAS  Google Scholar 

  98. [98]

    Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett.2016, 16, 264–269.

    CAS  Google Scholar 

  99. [99]

    Perumal, P.; Ulaganathan, R. K.; Sankar, R.; Liao, Y. M.; Sun, T. M.; Chu, M. W.; Chou, F. C.; Chen, Y. T.; Shih, M. H.; Chen, Y. F. Ultra-thin layered ternary single crystals [Sn(SxSe1-x)2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater.2016, 26, 3630–3638.

    CAS  Google Scholar 

  100. [100]

    Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett.2012, 12, 3788–3792.

    CAS  Google Scholar 

  101. [101]

    Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett.2014, 14, 6275–6280.

    CAS  Google Scholar 

  102. [102]

    Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett.2017, 17, 4122–4129.

    CAS  Google Scholar 

  103. [103]

    Liu, Y. D.; Cai, Y. Q.; Zhang, G; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater.2017, 27, 1604638.

    Google Scholar 

  104. [104]

    Liu, Y. D.; Ang, K. W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano2017, 11, 7416–7423.

    CAS  Google Scholar 

  105. [105]

    Chen, L.; Li, S.; Feng, X. W.; Wang, L.; Huang, X.; Tee, B. C. K.; Ang, K. W. Gigahertz integrated circuits based on complementary black phosphorus transistors. Adv. Electron. Mater.2018, 4, 1800274.

    Google Scholar 

  106. [106]

    Rai, A.; Valsaraj, A.; Movva, H. C. P.; Roy, A.; Ghosh, R.; Sonde, S.; Kang, S.; Chang, J.; Trivedi, T.; Dey, R. et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett.2015, 15, 4329–4336.

    CAS  Google Scholar 

  107. [107]

    Park, Y. J.; Katiyar, A. K.; Hoang, A. T.; Ahn, J. H. Controllable p- and n-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small2019, 15, 1901772.

    Google Scholar 

  108. [108]

    Min, S. W.; Yoon, M.; Yang, S. J.; Ko, K. R.; Im, S. Charge-transfer-induced p-type channel in MoS2 flake field effect transistors. ACS Appl. Mater. Interfaces2018, 10, 4206–4212.

    CAS  Google Scholar 

  109. [109]

    Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y. Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater.2016, 26, 4223–4230.

    CAS  Google Scholar 

  110. [110]

    Zhang, S. Y.; Le, S. T.; Richter, C. A.; Hacker, C. A. Improved contacts to p-type MoS2 transistors by charge-transfer doping and contact engineering. Appl. Phys. Lett.2019, 115, 073106.

    Google Scholar 

  111. [111]

    Cho, Y.; Park, J. H.; Kim, M.; Jeong, Y.; Yu, S.; Lim, J. Y.; Yi, Y.; Im, S. Impact of organic molecule-induced charge transfer on operating voltage control of both n-MoS2 and p-MoTe2 transistors. Nano Lett.2019, 19, 2456–2463.

    CAS  Google Scholar 

  112. [112]

    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett.2013, 13, 5944–5948.

    CAS  Google Scholar 

  113. [113]

    Xu, H.; Zhang, H. M.; Liu, Y. W.; Zhang, S. M.; Sun, Y. Y.; Guo, Z. X.; Sheng, Y. C.; Wang, X. D.; Luo, C.; Wu, X. et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater.2019, 29, 1805614.

    Google Scholar 

  114. [114]

    Ji, H. G.; Solis-Fernández, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater.2019, 31, 1903613.

    CAS  Google Scholar 

  115. [115]

    Kang, W. M.; Cho, I. T.; Roh, J.; Lee, C.; Lee, J. H. High-gain complementary metal-oxide-semiconductor inverter based on multi-layer WSe2 field effect transistors without doping. Semicond. Sci. Technol.2016, 31, 105001.

    Google Scholar 

  116. [116]

    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett.2013, 13, 100–105.

    CAS  Google Scholar 

  117. [117]

    Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett.2014, 14, 1714–1720.

    CAS  Google Scholar 

  118. [118]

    Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano2017, 11, 1588–1596.

    CAS  Google Scholar 

  119. [119]

    Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett.2013, 103, 103501.

    Google Scholar 

  120. [120]

    Nakaharai, S.; Yamamoto, M.; Ueno, K.; Tsukagoshi, K. Carrier polarity control in alpha-MoTe2 chottky junctions based on weak fermi-level pinning. ACS Appl. Mater. Interfaces2016, 8, 14732–14739.

    CAS  Google Scholar 

  121. [121]

    Zhu, W. N.; Yogeesh, M. N.; Yang, S. X.; Aldave, S. H.; Kim, J. S.; Sonde, S.; Tao, L.; Lu, N. S.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett.2015, 15, 1883–1890.

    CAS  Google Scholar 

  122. [122]

    Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature2019, 567, 323–333.

    CAS  Google Scholar 

  123. [123]

    Kong, L. A.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun.2020, 11, 1866.

    CAS  Google Scholar 

  124. [124]

    Das, S.; Dubey, M.; Roelofs, A. High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors. Appl. Phys. Lett.2014, 105, 083511.

    Google Scholar 

  125. [125]

    Resta, G. V.; Balaji, Y.; Lin, D.; Radu, I. P.; Catthoor, F.; Gaillardon, P. E.; De Micheli, G. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano2018, 12, 7039–7047.

    CAS  Google Scholar 

  126. [126]

    Wu, G. J.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wu, B. M.; Jiang, Y. Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X. R. et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater.2020, 32, 1907937.

    CAS  Google Scholar 

  127. [127]

    Wu, G. J.; Tian, B. B.; Liu, L.; Lv, W.; Wu, S.; Wang, X. D.; Chen, Y.; Li, J. Y.; Wang, Z.; Wu, S. Q. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron.2020, 3, 43–50.

    CAS  Google Scholar 

  128. [128]

    Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater.2016, 28, 4824–4831.

    CAS  Google Scholar 

  129. [129]

    Liu, X.; Islam, A.; Guo, J.; Feng, P. X. L. Controlling polarity of MoTe2 transistors for monolithic complementary logic via Schottky contact engineering. ACS Nano2020, 14, 1457–1467.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from the National Natural Science Foundation of China (Nos. 51991340, 51991341, 51802090, and 61874041) and from the Hunan Science Fund for Excellent Young Scholars (No. 812019037).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuan Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Chen, Y. & Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2958-7

Download citation

Keywords

  • field effect transistors
  • two-dimensional semiconductors
  • logic circuit
  • complementary-metal-oxide-semiconductor (CMOS)
  • polarity control