Skip to main content

Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are emerging as promising building blocks of high-performance photocatalysts for visible-light-driven water splitting because of their unique physical, chemical, electronic, and optical properties. This review focuses on the fundamentals of 2D TMDC-based mixed-dimensional heterostructures and their unique properties as visible-light-driven photocatalysts from the perspective of dimensionality and interface engineering. First, we discuss the approaches and advantages of surface modification and functionalization of 2D TMDCs for photocatalytic water splitting under visible-light illumination. We then classify the strategies for improving the photocatalytic activity of 2D TMDCs via combination with various low-dimensional nanomaterials to form mixed-dimensional heterostructures. Further, we highlight recent advances in the use of these mixed-dimensional heterostructures as high-efficiency visible-light-driven photocatalysts, particularly focusing on synthesis routes, modification approaches, and physiochemical mechanisms for improving their photoactivity. Finally, we provide our perspectives on future opportunities and challenges in promoting real-world photocatalytic applications of 2D TMDC-based heterostructures.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Wang, L.; Zhang, Y.; Chen, L.; Xu, H. X.; Xiong, Y. J. 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater.2018, 30, 1801955.

    Google Scholar 

  2. [2]

    Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res.2009, 42, 1910–1921.

    CAS  Google Scholar 

  3. [3]

    Mora, S. J.; Odella, E.; Moore, G. F.; Gust, D.; Moore, T. A.; Moore, A. L. Proton-coupled electron transfer in artificial photosynthetic systems. Acc. Chem. Res.2018, 51, 445–453.

    CAS  Google Scholar 

  4. [4]

    Rahman, M. Z.; Davey, K.; Qiao, S. Z. Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: Progress and challenges. J. Mater. Chem. A2018, 6, 1305–1322.

    CAS  Google Scholar 

  5. [5]

    Gan, X. R.; Lei, D. Y.; Wong, K. Y. Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Mater. Today Energy2018, 10, 352–367.

    Google Scholar 

  6. [6]

    Weng, B.; Qi, M. Y.; Han, C.; Tang, Z. R.; Xu, Y. J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal.2019, 9, 4642–4687.

    CAS  Google Scholar 

  7. [7]

    Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci.2017, 4, 1600216.

    Google Scholar 

  8. [8]

    Hu, Y. G.; Gao, C.; Xiong, Y. J. Surface and interface design for photocatalytic water splitting. Dalton Trans.2018, 47, 12035–12040.

    CAS  Google Scholar 

  9. [9]

    Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev.2014, 43, 5234–5244.

    CAS  Google Scholar 

  10. [10]

    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics2014, 8, 899–907.

    CAS  Google Scholar 

  11. [11]

    Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater.2016, 6, 1501974.

    Google Scholar 

  12. [12]

    Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev.2019, 48, 1972–2010.

    CAS  Google Scholar 

  13. [13]

    Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today2020, 34, 78–91.

    CAS  Google Scholar 

  14. [14]

    Ran, J. R.; Qu, J. T.; Zhang, H. P.; Wen, T.; Wang, H. L.; Chen, S. M.; Song, L.; Zhang, X. L.; Jing, L. Q.; Zheng, R. K. et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater.2019, 9, 1803402.

    Google Scholar 

  15. [15]

    Xia, B. Q.; Ran, J. R.; Chen, S. M.; Song, L.; Zhang, X. L.; Jing, L. Q.; Qiao, S. Z. A two-dimensional metal-organic framework accelerating visible-light-driven H2 production. Nanoscale2019, 11, 8304–8309.

    CAS  Google Scholar 

  16. [16]

    Ran, J. R.; Zhu, B. C.; Qiao, S. Z. Phosphorene Co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew. Chem., Int. Ed.2017, 56, 10373–10377.

    CAS  Google Scholar 

  17. [17]

    Tan, C. L.; Lai, Z. C.; Zhang, H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv Mater2017, 29, 1701392.

    Google Scholar 

  18. [18]

    Yin, H. J.; Tang, Z. Y. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev.2016, 45, 4873–4891.

    CAS  Google Scholar 

  19. [19]

    Wang, H.; Zhang, X. D.; Xie, Y. Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater. Sci. Eng. R Rep2018, 130, 1–39.

    Google Scholar 

  20. [20]

    Ida, S.; Ishihara, T. Recent progress in two-dimensional oxide photocatalysts for water splitting. J. Phys. Chem. Lett.2014, 5, 2533–2542.

    CAS  Google Scholar 

  21. [21]

    Gan, X. R; Lee, L. Y. S.; Wong, K. Y.; Lo, T. W.; Ho, K. H.; Lei, D. Y.; Zhao, H. M. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of s vacancies. ACS Appl. Energy Mater.2018, 1, 4754–4765.

    CAS  Google Scholar 

  22. [22]

    Sun, X.; Deng, H. T.; Zhu, W. G.; Yu, Z.; Wu, C. Z.; Xie, Y. Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for Ullmann couplings. Angew. Chem., Int. Ed.2016, 55, 1704–1709.

    CAS  Google Scholar 

  23. [23]

    Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today2017, 20, 116–130.

    CAS  Google Scholar 

  24. [24]

    Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res.2015, 48, 56–64.

    CAS  Google Scholar 

  25. [25]

    Su, T. M.; Shao, Q.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal.2018, 8, 2253–2276.

    CAS  Google Scholar 

  26. [26]

    Rahmanian, E.; Malekfar, R.; Pumera, M. Nanohybrids of two-dimensional transition-metal dichalcogenides and titanium dioxide for photocatalytic applications. Chem.—Eur. J.2018, 24, 18–31.

    CAS  Google Scholar 

  27. [27]

    Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Huang, Y.; Liu, K. L.; Cheng, Z. Z.; Jiang, C.; He, J. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale2015, 7, 19764–19788.

    CAS  Google Scholar 

  28. [28]

    Zhong, Y. Y.; Zhao, G.; Ma, F. K.; Wu, Y. Z.; Hao, X. P. Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution. Appl. Catal. B Environ.2016, 199, 466–472.

    CAS  Google Scholar 

  29. [29]

    Yang, W. L.; Zhang, X. D.; Xie, Y. Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today2016, 11, 793–816.

    CAS  Google Scholar 

  30. [30]

    Lei, S. D.; Wang, X. F.; Li, B.; Kang, J. H.; He, Y. M.; George, A.; Ge, L. H.; Gong, Y. J.; Dong, P.; Jin, Z. H. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotechnol.2016, 11, 465–471.

    CAS  Google Scholar 

  31. [31]

    Guo, Y. Q.; Xu, K.; Wu, C. Z.; Zhao, J. Y.; Xie, Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev.2015, 44, 637–646.

    CAS  Google Scholar 

  32. [32]

    Presolski, S.; Pumera, M. Covalent functionalization of MoS2. Mater. Today2016, 19, 140–145.

    CAS  Google Scholar 

  33. [33]

    Voiry, D.; Goswami, A.; Kappera, R.; Silva, C. D. C. C. E.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem.2015, 7, 45–49.

    CAS  Google Scholar 

  34. [34]

    Gan, X. R.; Zhao, H. M.; Wong, K. Y.; Lei, D. Y.; Zhang, Y. B.; Quan, X. Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection. Talanta2018, 182, 38–48.

    CAS  Google Scholar 

  35. [35]

    Vera-Hidalgo, M.; Giovanelli, E.; Navío, C.; Pérez, E. M. Mild covalent functionalization of transition metal dichalcogenides with maleimides: A “click” reaction for 2H-MoS2 and WS2. J. Am. Chem. Soc.2019, 141, 3767–3771.

    CAS  Google Scholar 

  36. [36]

    Sumesh, C. K.; Peter, S. C. Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications. Dalton Trans.2019, 48, 12772–12802.

    CAS  Google Scholar 

  37. [37]

    Tiwari, A. P.; Novak, T. G.; Bu, X. M.; Ho, J. C.; Jeon, S. Layered ternary and quaternary transition metal chalcogenide based catalysts for water splitting. Catalysts2018, 8, 551.

    Google Scholar 

  38. [38]

    Haque, F.; Daeneke, T.; Kalantar-zadeh, K.; Ou, J. Z. Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett.2018, 10, 23.

    Google Scholar 

  39. [39]

    Li, H. N.; Shi, Y. M.; Chiu, M. H.; Li, L. J. Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy2015, 18, 293–305.

    CAS  Google Scholar 

  40. [40]

    Zhang, X.; Lai, Z. C.; Ma, Q. L.; Zhang, H. Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev.2018, 47, 3301–3338.

    CAS  Google Scholar 

  41. [41]

    Chen, Y.; Fan, Z. X.; Zhang, Z.C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev.2018, 118, 6409–6455.

    CAS  Google Scholar 

  42. [42]

    Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev.2015, 44, 2713–2731.

    CAS  Google Scholar 

  43. [43]

    Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater.2017, 2, 17033.

    CAS  Google Scholar 

  44. [44]

    Iwase, A.; Ng, Y. H.; Ishiguro, Y.; Kudo, A.; Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc.2011, 133, 11054–11057.

    CAS  Google Scholar 

  45. [45]

    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev.2009, 38, 253–278.

    CAS  Google Scholar 

  46. [46]

    Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev.2020, 120, 919–985.

    CAS  Google Scholar 

  47. [47]

    Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics2016, 10, 227–238.

    CAS  Google Scholar 

  48. [48]

    Zhu, L. X.; Liu, F. Y.; Lin, H. T.; Hu, J. J.; Yu, Z. F.; Wang, X. R.; Fan, S. H. Angle-selective perfect absorption with two-dimensional materials. Light Sci. Appl.2016, 5, e16052.

    CAS  Google Scholar 

  49. [49]

    Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater.2013, 12, 815–820.

    CAS  Google Scholar 

  50. [50]

    Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; De Heer, W. A.; Lee, D. H.; Guinea, F.; Neto, A. H. C.; Lanzara, A. Erratum: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater.2007, 6, 916.

    CAS  Google Scholar 

  51. [51]

    Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev.2010, 110, 6503–6570.

    CAS  Google Scholar 

  52. [52]

    Nocera, D. G. The artificial leaf. Acc. Chem. Res.2012, 45, 767–776.

    CAS  Google Scholar 

  53. [53]

    Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev.2015, 44, 623–636.

    CAS  Google Scholar 

  54. [54]

    Jo, Y. K.; Lee, J. M.; Son, S.; Hwang, S. J. 2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. J. Photochem. Photobiol. C Photochem. Rev.2019, 40, 150–190.

    CAS  Google Scholar 

  55. [55]

    Yuan, Y. P.; Ruan, L. W.; Barber, J.; Loo, S. C. J.; Xue, C. Heteronanostructured suspended photocatalysts for solar-to-fuel conversion. Energy. Environ. Sci.2014, 7, 3934–3951.

    CAS  Google Scholar 

  56. [56]

    Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater.2012, 24, 229–251.

    CAS  Google Scholar 

  57. [57]

    Shao, N.; Wang, J. N.; Wang, D. D.; Corvini, P. Preparation of three-dimensional Ag3PO4/TiO2@MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion. Appl. Catal. B Environ.2017, 203, 964–978.

    CAS  Google Scholar 

  58. [58]

    Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai F. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res.2019, 12, 3109–3115.

    CAS  Google Scholar 

  59. [59]

    Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater.2014, 26, 4920–4935.

    CAS  Google Scholar 

  60. [60]

    Zheng, B. Y.; Ma, C.; Li, D.; Lan, J. Y.; Zhang, Z.; Sun, X. X.; Zheng, W. H.; Yang, T. F.; Zhu, C. G.; Ouyang, G. et al. Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc.2018, 140, 11193–11197.

    CAS  Google Scholar 

  61. [61]

    Zhang, J.; Qiao, S. Z.; Qi, L. F.; Yu, J. G. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys.2013, 15, 12088–12094.

    CAS  Google Scholar 

  62. [62]

    Liu, Y.; Yu, Y. X.; Zhang, W. D. MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: The role of MoS2. J. Phys. Chem. C2013, 117, 12949–12957.

    CAS  Google Scholar 

  63. [63]

    Mushtaq, A.; Ghosh, S.; Sarkar, A. S.; Pal, S. K. Multiple exciton harvesting at zero-dimensional/two-dimensional heterostructures. ACS Energy Lett.2017, 2, 1879–1885.

    CAS  Google Scholar 

  64. [64]

    Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today2018, 21, 1042–1063.

    CAS  Google Scholar 

  65. [65]

    Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater.2016, 28, 2427–2431.

    CAS  Google Scholar 

  66. [66]

    Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. H.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res.2016, 9, 2284–2293.

    CAS  Google Scholar 

  67. [67]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol.2011, 6, 147–150.

    CAS  Google Scholar 

  68. [68]

    Gu, Q.; Sun, H. M.; Xie, Z. Y.; Gao, Z. W.; Xue, C. MoS2-coated microspheres of self-sensitized carbon nitride for efficient photocatalytic hydrogen generation under visible light irradiation. Appl. Surf. Sci.2017, 396, 1808–1815.

    CAS  Google Scholar 

  69. [69]

    Di, J.; Yan, C.; Handoko, A. D.; Seh, Z. W.; Li, H. M.; Liu, Z. Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater. Today2018, 21, 749–770.

    CAS  Google Scholar 

  70. [70]

    Di, J.; Xiong, J.; Li, H. M.; Liu, Z. Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv. Mater.2018, 30, 1704548.

    Google Scholar 

  71. [71]

    Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater.2017, 29, 1601694.

    Google Scholar 

  72. [72]

    Luo, B.; Liu, G.; Wang, L. Z. Recent advances in 2D materials for photocatalysis. Nanoscale2016, 8, 6904–6920.

    CAS  Google Scholar 

  73. [73]

    Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater.2018, 30, 1704649.

    Google Scholar 

  74. [74]

    Shiraishi, Y.; Kofuji, Y.; Kanazawa, S.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chem. Commun.2014, 50, 15255–15258.

    CAS  Google Scholar 

  75. [75]

    Zhang, J.; Zhu, Z. P.; Tang, Y. P.; Müllen, K.; Feng, X. L. Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv. Mater.2014, 26, 734–738.

    CAS  Google Scholar 

  76. [76]

    Bi, W. T.; Li, X. G.; Zhang, L.; Jin, T.; Zhang, L. D.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun.2015, 6, 8647.

    CAS  Google Scholar 

  77. [77]

    Jin, Y.; Jiang, D. L.; Li, D.; Xiao, P.; Ma, X. D.; Chen, M. SrTiO3 nanoparticle/SnNb2O6 nanosheet 0D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic hydrogen evolution activity. ACS Sustainable Chem. Eng.2017, 5, 9749–9757.

    CAS  Google Scholar 

  78. [78]

    Tan, L.; Li, P. D.; Sun, B. Q.; Chaker, M.; Ma, D. L. Stabilities related to near-infrared quantum dot-based solar cells: The role of surface engineering. ACS Energy Lett.2017, 2, 1573–1585.

    CAS  Google Scholar 

  79. [79]

    Pincella, F.; Isozaki, K.; Miki, K. A visible light-driven plasmonic photocatalyst. Light Sci. Appl.2014, 3, e133.

    CAS  Google Scholar 

  80. [80]

    Chen, W.; Zhang, S. P.; Kang, M.; Liu, W. K.; Ou, Z. W.; Li, Y.; Zhang, Y. X.; Guan, Z. Q.; Xu, H. X. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light Sci. Appl.2018, 7, 56.

    Google Scholar 

  81. [81]

    Ma, X. C.; Dai, Y.; Yu, L.; Huang, B. B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl.2016, 5, e16017.

    CAS  Google Scholar 

  82. [82]

    Tian, Y.; Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc.2005, 127, 7632–7637.

    CAS  Google Scholar 

  83. [83]

    Shan, H. Y.; Yu, Y.; Wang, X. L.; Luo, Y.; Zu, S.; Du, B. W.; Han, T. Y.; Li, B. W.; Li, Y.; Wu, J. R. et al. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci. Appl.2019, 8, 9.

    Google Scholar 

  84. [84]

    Zhang, F.; Zhuang, H. Q.; Song, J.; Men, Y. L.; Pan, Y. X.; Yu, S. H. Coupling cobalt sulfide nanosheets with cadmium sulfide nanoparticles for highly efficient visible-light-driven photocatalysis. Appl. Catal. B Environ.2018, 226, 103–110.

    CAS  Google Scholar 

  85. [85]

    Zhang, Z.; Yates, Jr. J. T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev.2012, 112, 5520–5551.

    CAS  Google Scholar 

  86. [86]

    Maeda, K.; Teramura, K.; Lu, D. L.; Saito, N.; Inoue, Y.; Domen, K. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem., Int., Ed.2006, 45, 7806–7809.

    CAS  Google Scholar 

  87. [87]

    Garcia-Esparza, A. T.; Shinagawa, T.; Ould-Chikh, S.; Qureshi, M.; Peng, X. Y.; Wei, N. N.; Anjum, D. H.; Clo, A.; Weng, T. C.; Nordlund, D. et al. An oxygen-insensitive hydrogen evolution catalyst coated by a molybdenum-based layer for overall water splitting. Angew. Chem., Int. Ed.2017, 56, 5780–5784.

    CAS  Google Scholar 

  88. [88]

    Bau, J. A.; Takanabe, K. Ultrathin microporous SiO2 membranes photodeposited on hydrogen evolving catalysts enabling overall water splitting. ACS Catal.2017, 7, 7931–7940.

    CAS  Google Scholar 

  89. [89]

    Xu, B.; He, P. L.; Liu, H. L.; Wang, P. P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem., Int. Ed.2014, 53, 2339–2343.

    CAS  Google Scholar 

  90. [90]

    Liu, S. Q.; Tang, Z. R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y. J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev.2015, 44, 5053–5075.

    CAS  Google Scholar 

  91. [91]

    Meng, F. K.; Li, J. T.; Cushing, S. K.; Bright, J.; Zhi, M. J.; Rowley, J. D.; Hong, Z. L.; Manivannan, A.; Bristow, A. D.; Wu, N. Q. Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal.2013, 3, 746–751.

    CAS  Google Scholar 

  92. [92]

    Li, C.; Yu, Y. F.; Chi, M. F.; Cao, L. Y. Epitaxial nanosheet-nanowire heterostructures. Nano Lett.2013, 13, 948–953.

    CAS  Google Scholar 

  93. [93]

    Zhang, X.; Chen, Y. J.; Xiao, Y. T.; Zhou, W.; Tian, G. H.; Fu, H. G. Enhanced charge transfer and separation of hierarchical hydrogenated TiO2 nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H2 production activity. Nanoscale2018, 10, 4041–4050.

    CAS  Google Scholar 

  94. [94]

    Zhang, X. C.; Hu, W. Y.; Zhang, K. F.; Wang, J. N.; Sun, B. J.; Li, H. Z.; Qiao, P. Z.; Wang, L.; Zhou, W. Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts. ACS Sustainable Chem. Eng.2017, 5, 6894–6901.

    CAS  Google Scholar 

  95. [95]

    Zhou, B. H.; Yang, S. L.; Wu, W.; Sun, L. L.; Lei, M.; Pan, J.; Xiong, X. Self-assemble SnO2@TiO2 porous nanowire-nanosheet heterostructures for enhanced photocatalytic property. CrystEngComm.2014, 16, 10863–10869.

    CAS  Google Scholar 

  96. [96]

    Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two-dimensional materials. Proc. Natl. Acad. Sci. USA2017, 114, 5930–5934.

    CAS  Google Scholar 

  97. [97]

    Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev.2017, 46, 1842–1874.

    CAS  Google Scholar 

  98. [98]

    Yang, X. F.; Tian, L.; Zhao, X. L.; Tang, H.; Liu, Q. Q.; Li, G. S. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. App. Catal. B Environ.2019, 244, 240–249.

    CAS  Google Scholar 

  99. [99]

    Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett.2010, 1, 2655–2661.

    CAS  Google Scholar 

  100. [100]

    Gu, W. L.; Lu, F. X.; Wang, C.; Kuga, S.; Wu, L. Z.; Huang, Y.; Wu, M. Face-to-face interfacial assembly of ultrathin g-C3N4 and anatase TiO2 nanosheets for enhanced solar photocatalytic activity. ACS Appl. Mater. Interfaces2017, 9, 28674–28684.

    CAS  Google Scholar 

  101. [101]

    Parzinger, E.; Miller, B.; Blaschke, B.; Garrido, J. A.; Ager, J. W.; Holleitner, A.; Wurstbauer, U. Photocatalytic stability of single- and few-layer MoS2. ACS Nano2015, 9, 11302–11309.

    CAS  Google Scholar 

  102. [102]

    Park, K. H.; Choi, J.; Kim, H. J.; Oh, D. H.; Ahn, J. R.; Son, S. U. Unstable single-layered colloidal TiS2 nanodisks. Small2008, 4, 945–950.

    CAS  Google Scholar 

  103. [103]

    Balendhran, S.; Deng, J. K.; Ou, J. Z.; Walia, S.; Scott, J.; Tang, J. S.; Wang, K. L.; Field, M. R.; Russo, S.; Zhuiykov, S. et al. Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater.2013, 25, 109–114.

    CAS  Google Scholar 

  104. [104]

    Li, W. J.; Lin, Z. Y.; Yang, G W. A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale2017, 9, 18290–18298.

    CAS  Google Scholar 

  105. [105]

    Li, G. W; Blake, G. R.; Palstra, T. T. M. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chem. Soc. Rev.2017, 46, 1693–1706.

    CAS  Google Scholar 

  106. [106]

    Long, J. L.; Chang, H. J.; Gu, Q.; Xu, J.; Fan, L. Z.; Wang, S. C.; Zhou, Y. G.; Wei, W.; Huang, L.; Wang, X. X. et al. Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets. Energy Environ. Sci.2014, 7, 973–977.

    CAS  Google Scholar 

  107. [107]

    Wang, L. L.; Ge, J.; Wang, A. L.; Deng, M. S.; Wang, X. J.; Bai, S.; Li, R.; Jiang, J.; Zhang, Q.; Luo, Y. et al. Designing p-type semiconductor-metal hybrid structures for improved photocatalysis. Angew. Chem., Int. Ed.2014, 53, 5107–5111.

    CAS  Google Scholar 

  108. [108]

    Ismail, A. A.; Bahnemann, D. W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy Mater. Solar Cells2014, 128, 85–101.

    CAS  Google Scholar 

  109. [109]

    Chen, J. H.; Bailey, C. S.; Hong, Y. L.; Wang, L.; Cai, Z.; Shen, L.; Hou, B. Y.; Wang, Y.; Shi, H. T.; Sambur, J. et al. Plasmon-resonant enhancement of photocatalysis on monolayer WSe2. ACS Photonics2019, 6, 787–792.

    CAS  Google Scholar 

  110. [110]

    Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater.2011, 10, 911–921.

    CAS  Google Scholar 

  111. [111]

    Choi, S. Y.; Yip, C. T.; Li, G. C.; Lei, D. Y.; Fung, K. H.; Yu, S. F.; Hao, J. H. Photoluminescence enhancement in few-layer WS2 films via Au nanoparticles. AIP Adv.2015, 5, 067148.

    Google Scholar 

  112. [112]

    Kang, T. D.; Yoon, J. G. Optical characterization of surface plasmon resonance of Pt nanoparticles in TiO2-SiO2 nanocomposite films. J. Appl. Phys.2017, 122, 134302.

    Google Scholar 

  113. [113]

    Li, X. H.; Guo, S. H.; Kan, C. X.; Zhu, J. M.; Tong, T. T.; Ke, S. L.; Choy, W. C. H.; Wei, B. Q. Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy2016, 30, 549–558.

    CAS  Google Scholar 

  114. [114]

    Zhang, N.; Han, C.; Xu, Y. J.; Foley IV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics2016, 10, 473–482.

    Google Scholar 

  115. [115]

    Minguez-Bacho, I.; Courte, M.; Fan, H. J.; Fichou, D. Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties. Nanotechnology2015, 26, 185401.

    Google Scholar 

  116. [116]

    Liu, Y.; Zhang, Z. Y.; Fang, Y. R.; Liu, B. K.; Huang, J. D.; Miao, F. J.; Bao, Y. A.; Dong, B. IR-driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane. Appl. Catal. B Environ.2019, 252, 164–173.

    CAS  Google Scholar 

  117. [117]

    Zhang, Y. Z.; Guo, S. H.; Xin, X.; Song, Y. R.; Yang, L.; Wang, B. L.; Tan, L. L.; Li, X. H. Plasmonic MoO2 as co-catalyst of MoS2 for enhanced photocatalytic hydrogen evolution. Appl Surf. Sci.2020, 504, 144291.

    CAS  Google Scholar 

  118. [118]

    Guo, L.; Yang, Z.; Marcus, K.; Li, Z.; Luo, B.; Zhou, L.; Wang, X.; Du, Y.; Yang, Y. MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ. Sci.2018, 11, 106–114.

    CAS  Google Scholar 

  119. [119]

    Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed.2015, 54, 1210–1214.

    CAS  Google Scholar 

  120. [120]

    Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc.2008, 130, 7176–7177.

    CAS  Google Scholar 

  121. [121]

    Gan, X. R.; Zhao, H. M.; Quan, X. Two-dimensional MoS2: A promising building block for biosensors. Biosens. Bioelectron.2017, 89, 56–71.

    CAS  Google Scholar 

  122. [122]

    Li, D.; Liu, Y.; Shi, W. W.; Shao, C. Y.; Wang, S. Y.; Ding, C. M.; Liu, T. F.; Fan, F. T.; Shi, J. Y.; Li, C. Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation. ACS Energy Lett.2019, 4, 825–831.

    CAS  Google Scholar 

  123. [123]

    Yang, L.; Zhong, D.; Zhang, J. Y.; Yan, Z. P.; Ge, S. F.; Du, P. W.; Jiang, J.; Sun, D.; Wu, X. J.; Fan, Z. Y. et al. Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution. ACS Nano2014, 8, 6979–6985.

    CAS  Google Scholar 

  124. [124]

    Wen, J. Q.; Xie, J.; Zhang, H. D.; Zhang, A. P.; Liu, Y. J.; Chen, X. B.; Li, X. Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation. ACS Appl. Mater. Interfaces2017, 9, 14031–14042.

    CAS  Google Scholar 

  125. [125]

    Sun, S. C.; Zhang, Y. C.; Shen, G. Q.; Wang, Y. T.; Liu, X. L.; Duan, Z. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Photoinduced composite of Pt decorated Ni(OH)2 as strongly synergetic cocatalyst to boost H2O activation for photocatalytic overall water splitting. Appl. Catal. B Environ.2019, 243, 253–261.

    CAS  Google Scholar 

  126. [126]

    He, K. L.; Xie, J.; Yang, Z. H.; Shen R. C., Fang Y. P.; Ma, S.; Chen, X. B.; Li X. Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H2 production over g-C3N4 nanosheets under visible light. Catal. Sci. Technol.2017, 7, 1193–1202.

    CAS  Google Scholar 

  127. [127]

    Shen, R. C.; Xie, J.; Zhang, H. D.; Zhang, A. P.; Chen, X. B.; Li, X. Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy. ACS Sustainable Chem. Eng.2018, 6, 816–826.

    CAS  Google Scholar 

  128. [128]

    Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K.; Yin, S. Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photocatalytic hydrogen evolution performance of graphitic carbon nitride: Efficient interfacial charge transfer. ACS Appl. Mater. Interfaces2019, 11, 26898–26908.

    CAS  Google Scholar 

  129. [129]

    Zhang, S. Q.; Liu, X.; Liu, C. B.; Luo, S. L.; Wang, L. L.; Cai, T.; Zeng, Y. X.; Yuan, J. L.; Dong, W. Y.; Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano2018, 12, 751–758.

    CAS  Google Scholar 

  130. [130]

    Zhang, K.; Lin, Y. X.; Muhammad, Z.; Wu, C. Q.; Yang, S.; He, Q.; Zheng, X. S.; Chen, S. M.; Ge, B. H.; Song, L. Active {010} facet-exposed Cu2MoS4 nanotube as high-efficiency photocatalyst. Nano Res.2017, 10, 3817–3825.

    CAS  Google Scholar 

  131. [131]

    Li, M. Q.; Cui, Z.; Li, E. L. Silver-modified MoS2 nanosheets as a high-efficiency visible-light photocatalyst for water splitting. Ceram. Int.2019, 45, 14449–14456.

    CAS  Google Scholar 

  132. [132]

    Xiong, J. H.; Liu, Y. H.; Wang, D. K.; Liang, S. J.; Wu, W. M.; Wu, L. An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J. Mater. Chem. A2015, 3, 12631–12635.

    CAS  Google Scholar 

  133. [133]

    Zhang, X. H.; Li, N.; Wu, J. J.; Zheng, Y. Z.; Tao, X. Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Appl. Catal. B Environ.2018, 229, 227–236.

    CAS  Google Scholar 

  134. [134]

    Zhang, S. W.; Yang, H. C.; Gao, H. H.; Cao, R. Y.; Huang, J. Z.; Xu, X. J. One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces2017, 9, 23635–23646.

    CAS  Google Scholar 

  135. [135]

    Yeh, T. F.; Chen, S. J.; Teng, H. Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition. Nano Energy2015, 12, 476–485.

    CAS  Google Scholar 

  136. [136]

    Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall watersplitting under visible light illumination. Adv. Mater.2014, 26, 3297–3303.

    CAS  Google Scholar 

  137. [137]

    Liu, F. L.; Huang, C.; Liu, C. X.; Shi, R.; Chen, Y. Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting. Chem.—Eur. J.2020, 26, 4449–4460.

    CAS  Google Scholar 

  138. [138]

    Shearer, C. J.; Cherevan, A.; Eder, D. Application and future challenges of functional nanocarbon hybrids. Adv. Mater.2014, 26, 2295–2318.

    CAS  Google Scholar 

  139. [139]

    Nguyen, B. S.; Xiao, Y. K.; Shih, C. Y.; Nguyen, V. C.; Chou, W. Y.; Teng, H. Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition. Nanoscale2018, 10, 10721–10730.

    CAS  Google Scholar 

  140. [140]

    Mateo, D.; García-Mulero, A.; Albero, J.; García, H. N-doped defective graphene decorated by strontium titanate as efficient photocatalyst for overall water splitting. Appl. Catal. B Environ.2019, 252, 111–119.

    CAS  Google Scholar 

  141. [141]

    Xie, G. C; Guan, L. M.; Zhang, L. J.; Guo, B. D.; Batool, A.; Xin, Q.; Boddula, R.; Jan, S. U.; Gong, J. R. Interaction-dependent interfacial charge-transfer behavior in solar water-splitting systems. Nano Lett.2019, 19, 1234–1241.

    Google Scholar 

  142. [142]

    Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visible-light photocatalytic hydrogen evolution. Small2019, 15, 1902459.

    Google Scholar 

  143. [143]

    Chen, T. J.; Song, C. J.; Fan, M. S.; Hong, Y. Z.; Hu, B.; Yu, L. B.; Shi, W. D. In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer. Int. J. Hydrogen Energy2017, 42, 12210–12219.

    CAS  Google Scholar 

  144. [144]

    Sui, Y. L.; Wu, L.; Zhong, S. K.; Liu, Q. X. Carbon quantum dots/TiO2 nanosheets with dominant (001) facets for enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci.2019, 480, 810–816.

    CAS  Google Scholar 

  145. [145]

    Ratnayake, S. P.; Mantilaka, M. M. M. G. P. G.; Sandaruwan, C.; Dahanayake, D.; Murugan, E.; Kumar, S.; Amaratunga, G. A. J.; De Silva, K. M. N. Carbon quantum dots-decorated nano-zirconia: A highly efficient photocatalyst. Appl. Catal. A Gen.2019, 570, 23–30.

    CAS  Google Scholar 

  146. [146]

    Ozel, F.; Aslan, E.; Istanbullu, B.; Akay, O.; Patir, I. H. Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals. Appl. Catal. B Environ.2016, 198, 67–73.

    CAS  Google Scholar 

  147. [147]

    Hu, Y. D.; Chen, G.; Li, C. M.; Zhou, Y. S.; Sun, J. X.; Hao, S.; Han, Z. H. Fabrication of {010} facet dominant BiTaO4 single-crystal nanoplates for efficient photocatalytic performance. J. Mater. Chem. A2016, 4, 5274–5281.

    CAS  Google Scholar 

  148. [148]

    Chen, W. Z.; Hou, X. H.; Shi, X. Q.; Pan, H. Two-dimensional Janus transition metal oxides and chalcogenides: Multifunctional properties for photocatalysts, electronics, and energy conversion. ACS Appl. Mater. Interfaces2018, 10, 35289–35295.

    CAS  Google Scholar 

  149. [149]

    Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D. Q.; Chen, W. B.; Guo, H.; Jin, Z. H.; Shenoy, V. B.; Shi, L. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano2017, 11, 8192–8198.

    CAS  Google Scholar 

  150. [150]

    Wang, L.; Zhou, H. H.; Zhang, H. Z.; Song, Y. L.; Zhang, H.; Qian, X. H. SiO2@TiO2 core@shell nanoparticles deposited on 2D-layered ZnIn2S4 to form a ternary heterostructure for simultaneous photocatalytic hydrogen production and organic pollutant degradation. Inorg. Chem.2020, 59, 2278–2287.

    CAS  Google Scholar 

  151. [151]

    Wang, B.; Cai, H. R.; Shen, S. H. Single metal atom photocatalysis. Small Methods2019, 3, 1800447.

    Google Scholar 

  152. [152]

    Wang, Y.; Zhang, W. H.; Deng, D. H.; Bao, X. H. Two-dimensional materials confining single atoms for catalysis. Chin. J. Catal.2017, 38, 1443–1453.

    CAS  Google Scholar 

  153. [153]

    Gao, C.; Low, J. X.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev., in press, https://doi.org/10.1021/acs.chemrev.9b00840.

  154. [154]

    Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res.2016, 9, 1763–1774.

    CAS  Google Scholar 

  155. [155]

    Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater.2017, 2, 17050.

    CAS  Google Scholar 

  156. [156]

    He, T. W.; Zhang, C. M.; Zhang, L.; Du, A. J. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline. Nano Res.2019, 12, 1817–1823.

    CAS  Google Scholar 

  157. [157]

    Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater.2018, 30, 1705112.

    Google Scholar 

  158. [158]

    Cao, Y. J.; Wang, D. H.; Lin, Y.; Liu, W.; Cao, L. L.; Liu, X. K.; Zhang, W.; Mou, X. L.; Fang, S.; Shen, X. Y. et al. Single Pt atom with highly vacant d-orbital for accelerating photocatalytic H2 evolution. ACS Appl. Energy Mater.2018, 1, 6082–6088.

    Google Scholar 

  159. [159]

    Su, H.; Che, W.; Tang, F. M.; Cheng, W. R.; Zhao, X.; Zhang, H.; Liu, Q. H. Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting. J. Phys. Chem. C2018, 122, 21108–21114.

    CAS  Google Scholar 

  160. [160]

    Zhao, Q.; Sun, J.; Li, S. C.; Huang, C. P.; Yao, W. F.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. J. Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal.2018, 8, 11863–11874.

    CAS  Google Scholar 

  161. [161]

    Zhao, Q.; Yao, W. F.; Huang, C. P.; Wu, Q.; Xu, Q. J. Effective and durable Co single atomic cocatalysts for photocatalytic hydrogen production. ACS Appl. Mater. Interfaces2017, 9, 42734–42741.

    CAS  Google Scholar 

  162. [162]

    Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.; Wu, G. P.; Li, C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C2011, 115, 12202–12208.

    CAS  Google Scholar 

  163. [163]

    Liu, X. F.; Xing, Z. P.; Zhang, H.; Wang, W. M.; Zhang, Y.; Li, Z. Z.; Wu, X. Y.; Yu, X. J.; Zhou, W. Fabrication of 3D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis. ChemSusChem2016, 9, 1118–1124.

    CAS  Google Scholar 

  164. [164]

    Shao, M. M.; Shao, Y. F.; Ding, S. J.; Tong, R.; Zhong, X. W.; Yao, L. M.; Ip, W. F.; Xu, B. M.; Shi, X. Q.; Sun, Y. Y. et al. Carbonized MoS2: Super-active Co-catalyst for highly efficient water splitting on CdS. ACS Sustainable Chem. Eng.2019, 7, 4220–4229.

    CAS  Google Scholar 

  165. [165]

    Xiong, M. H.; Chai, B.; Yan J. T., Fan G Z., Song G. S. Few-layer WS2 decorating ZnIn2S4 with markedly promoted charge separation and photocatalytic H2 evolution activity. Appl. Surf. Sci.2020, 514, 145965.

    CAS  Google Scholar 

  166. [166]

    Chen, J. H.; Tan, J.; Wu, G. X.; Zhang, X. J; Xu, F.; Lu, Y. Q. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light: Sci. Appl.2019, 8, 8.

    Google Scholar 

  167. [167]

    Li, Y.; Wang, L. L.; Cai, T.; Zhang, S. Q.; Liu, Y. T.; Song, Y. Z.; Dong, X. R.; Hu, L. Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem. Eng. J.2017, 321, 366–374.

    CAS  Google Scholar 

  168. [168]

    Shen, M.; Yan, Z. P.; Yang, L.; Du, P. W.; Zhang, J. Y.; Xiang, B. MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun.2014, 50, 15447–15449.

    CAS  Google Scholar 

  169. [169]

    Liu, C. B.; Wang, L. L.; Tang, Y. H.; Luo, S. L.; Liu, Y. T.; Zhang, S. Q.; Zeng, Y. X.; Xu, Y. Z. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ.2015, 164, 1–9.

    CAS  Google Scholar 

  170. [170]

    Chava, R. K.; Do, J. Y.; Kang, M. Hydrothermal growth of two dimensional hierarchical MoS2 nanospheres on one dimensional CdS nanorods for high performance and stable visible photocatalytic H2 evolution. Appl. Surf. Sci.2018, 433, 240–248.

    CAS  Google Scholar 

  171. [171]

    Wang, T.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res.2017, 10, 2699–2711.

    CAS  Google Scholar 

  172. [172]

    Feng, W. H.; Wang, Y. Z.; Huang, X. Y.; Wang, K. Q.; Gao, F.; Zhao, Y.; Wang, B.; Zhang, L. L.; Liu, P. One-pot construction of 1D/2D Zn1−xCdxS/D-ZnS(en)0.5 composites with perfect heterojunctions and their superior visible-light-driven photocatalytic H2 evolution. Appl. Catal. B Environ.2018, 220, 324–336.

    CAS  Google Scholar 

  173. [173]

    Li, H. D.; Wang, Y. N.; Chen, G. H.; Sang, Y. H.; Jiang, H. D.; He, J. T.; Li, X.; Liu, H. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property. Nanoscale2016, 8, 6101–6109.

    CAS  Google Scholar 

  174. [174]

    Ma, B.; Guan, P. Y.; Li, Q. Y.; Zhang, M.; Zang, S. Q. MOF-derived flower-like MoS2@TiO2 nanohybrids with enhanced activity for hydrogen evolution. ACS Appl. Mater. Inter.2016, 8, 26794–26800.

    CAS  Google Scholar 

  175. [175]

    Li, Q. H.; Qiao, X. Q.; Jia, Y. L.; Hou, D. F.; Li, D. S. Amorphous CoMoS4 nanostructure for photocatalytic H2 generation, nitrophenol reduction, and methylene blue adsorption. ACS Appl. Nano Mater.2020, 3, 68–76.

    Google Scholar 

  176. [176]

    Xu, D. Y.; Xu, P. T.; Zhu, Y. Z.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Mallouk, T. E.; Fan, X. B. High yield exfoliation of WS2 crystals into 1–2 layer semiconducting nanosheets and efficient photocatalytic hydrogen evolution from WS2/CdS nanorod composites. ACS Appl. Mater. Interfaces2018, 10, 2810–2818.

    CAS  Google Scholar 

  177. [177]

    Frisenda, R.; Molina-Mendoza, A. J.; Mueller, T.; Castellanos-Gomez, A.; van der Zant, H. S. J. Atomically thin p-n junctions based on two-dimensional materials. Chem. Soc. Rev.2018, 47, 3339–3358.

    CAS  Google Scholar 

  178. [178]

    Li, D. S.; Wang, H. C.; Tang, H.; Yang, X. F.; Liu, Q. Q. Remarkable enhancement in solar oxygen evolution from MoSe2/Ag3PO4 heterojunction photocatalyst via in situ constructing interfacial contact. ACS Sustainable Chem. Eng.2019, 7, 8466–8474.

    CAS  Google Scholar 

  179. [179]

    Zhu, M. S.; Sun, Z. C.; Fujitsuka, M.; Majima, T. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem., Int. Ed.2018, 57, 2160–2164.

    CAS  Google Scholar 

  180. [180]

    Pan, Z. M.; Zhang, G. G.; Wang, X. C. Polymeric carbon nitride/reduced graphene oxide/Fe2O3: All-solid-state Z-scheme system for photocatalytic overall water splitting. Angew. Chem., Int. Ed.2019, 58, 7102–7106.

    CAS  Google Scholar 

  181. [181]

    Gao, G. H.; Gao, W.; Cannuccia, E.; Taha-Tijerina, J.; Balicas, L.; Mathkar, A.; Narayanan, T. N.; Liu, Z.; Gupta, B. K.; Peng, J. et al. Artificially stacked atomic layers: Toward new van der Waals solids. Nano Lett.2012, 12, 3518–3525.

    CAS  Google Scholar 

  182. [182]

    Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K. H.; Sun, Y. F.; Li, X. F.; Borys, N. J.; Yuan, H. T.; Fullerton-Shirey, S. K. et al. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater.2016, 3, 042001.

    Google Scholar 

  183. [183]

    Geim, A. K.; Grigorieva, I. V. van der Waals heterostructures. Nature2013, 499, 419–425.

    CAS  Google Scholar 

  184. [184]

    Ou, Y.; Kang, Z.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Edge induced band bending in van der Waals heterojunctions: A first principle study. Nano Res.2020, 13, 701–708.

    CAS  Google Scholar 

  185. [185]

    Ma, S.; Xie, J.; Wen, J. Q.; He, K. L.; Li, X.; Liu, W.; Zhang, X. C. Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl. Surf. Sci.2017, 391, 580–591.

    CAS  Google Scholar 

  186. [186]

    Meng, F. K.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc.2013, 135, 10286–10289.

    CAS  Google Scholar 

  187. [187]

    Min, Y.; Im, E.; Hwang, G. T.; Kim, J. W.; Ahn, C. W.; Choi, J. J.; Hahn, B. D.; Choi, J. H.; Yoon, W. H.; Park, D. S. et al. Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Res.2019, 12, 1750–1769.

    CAS  Google Scholar 

  188. [188]

    Pu, C. C.; Wan, J.; Liu, E. Z.; Yin, Y. C.; Li, J.; Ma, Y. N.; Fan, J.; Hu, X. Y. Two-dimensional porous architecture of protonated GCN and reduced graphene oxide via electrostatic self-assembly strategy for high photocatalytic hydrogen evolution under visible light. Appl. Surf. Sci.2017, 399, 139–150.

    CAS  Google Scholar 

  189. [189]

    Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater.2014, 13, 1135–1142.

    CAS  Google Scholar 

  190. [190]

    Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett.2011, 11, 3768–3773.

    CAS  Google Scholar 

  191. [191]

    Xu, J.; Zhang, J. J.; Zhang, W. J.; Lee, C. S. Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications. Adv. Energy Mater.2017, 7, 1700571.

    Google Scholar 

  192. [192]

    Peng, R.; Liang, L. B.; Hood, Z. D.; Boulesbaa, A.; Puretzky, A.; Ievlev, A. V.; Come, J.; Ovchinnikova, O. S.; Wang, H.; Ma, C. et al. In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction. ACS Catal.2016, 6, 6723–6729.

    CAS  Google Scholar 

  193. [193]

    Yan, D. P.; Tang, Y. Q.; Lin, H. Y.; Wang, D. Tunable two-color luminescence and host-guest energy transfer of fluorescent chromophores encapsulated in metal-organic frameworks. Sci. Rep.2015, 4, 4337.

    Google Scholar 

  194. [194]

    Putri, L. K.; Tan, L. L.; Ong, W. J.; Chang, W. S.; Chai, S. P. Graphene oxide: Exploiting its unique properties toward visible-light-driven photocatalysis. Appl. Mater. Today2016, 4, 9–16.

    Google Scholar 

  195. [195]

    Thurston, T. R.; Wilcoxon, J. P. Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J. Phys. Chem. B1999, 103, 11–17.

    CAS  Google Scholar 

  196. [196]

    Yuan, Y. J.; Tu, J. R.; Ye, Z. J.; Chen, D. Q.; Hu, B.; Huang, Y. W.; Chen, T. T.; Cao, D. P.; Yu, Z. T.; Zou, Z. G. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Appl. Catal. B Environ.2016, 188, 13–22.

    CAS  Google Scholar 

  197. [197]

    Yuan, Y. J.; Chen, D. Q.; Zhong, J. S.; Yang, L. X.; Wang, J. J.; Yu, Z. T.; Zou, Z. G. Construction of a noble-metal-free photocatalytic H2 evolution system using MoS2/reduced graphene oxide catalyst and zinc porphyrin photosensitizer. J. Phys. Chem. C2017, 121, 24452–24462.

    CAS  Google Scholar 

  198. [198]

    Xia, P. F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Xu, J. S. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustainable Chem. Eng.2018, 6, 965–973.

    CAS  Google Scholar 

  199. [199]

    Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res.2013, 46, 1900–1909.

    CAS  Google Scholar 

  200. [200]

    Xu, J.; Zhang, J. J.; Zhang, W. J.; Lee, C. S. Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications. Adv. Energy Mater.2017, 7, 1700571.

    Google Scholar 

  201. [201]

    Lu, N.; Guo, H. Y.; Wang, L.; Wu, X. J.; Zeng, X. C. van der Waals trilayers and superlattices: Modification of electronic structures of MoS2 by intercalation. Nanoscale2014, 6, 4566–4571.

    CAS  Google Scholar 

  202. [202]

    Wei, L.; Chen, Y. J.; Lin, Y. P.; Wu, H. S.; Yuan, R. S.; Li, Z. H. MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl. Catal. B Environ.2014, 144, 521–527.

    CAS  Google Scholar 

  203. [203]

    Yang, M. Q.; Xu, Y. J.; Lu, W. H.; Zeng, K. Y.; Zhu, H.; Xu, Q. H.; Ho, G. W. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun.2017, 8, 14224.

    CAS  Google Scholar 

  204. [204]

    Tan, P. F.; Zhu, A. Q.; Qiao, L. L.; Zeng, W. X.; Ma, Y. J.; Dong, H. G.; Xie, J. P.; Pan, J. Constructing a direct Z-scheme photocatalytic system based on 2D/2D WO3/ZnIn2S4 nanocomposite for efficient hydrogen evolution under visible light. Inorg. Chem. Front.2019, 6, 929–939.

    CAS  Google Scholar 

  205. [205]

    Iqbal, S.; Pan, Z. W.; Zhou, K. B. Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures. Nanoscale2017, 9, 6638–6642.

    CAS  Google Scholar 

  206. [206]

    Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed.2013, 52, 3621–3625.

    CAS  Google Scholar 

  207. [207]

    Lin, B.; Li, H.; An, H.; Hao, W. B.; Wei, J. J.; Dai, Y. Z.; Ma, C. S.; Yang, G. D. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl. Catal. B Environ.2018, 220, 542–552.

    CAS  Google Scholar 

  208. [208]

    Li, J.; Zhan, G. M.; Yu, Y.; Zhang, L. Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun.2016, 7, 11480.

    CAS  Google Scholar 

  209. [209]

    Tian, G. H.; Chen, Y. J.; Ren, Z. Y.; Tian, C. G.; Pan, K.; Zhou, W.; Wang, J. Q.; Fu, H. G. Enhanced photocatalytic hydrogen evolution over hierarchical composites of ZnIn2S4 nanosheets grown on MoS2 slices. Chem.—Asian J.2014, 9, 1291–1297.

    CAS  Google Scholar 

  210. [210]

    Li, Z. W.; Hou, J. G; Zhang, B.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Nie, X. W.; Sun, L. C. Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting. Nano Energy2019, 59, 537–544.

    CAS  Google Scholar 

  211. [211]

    Zhu, C. Z.; Wang, Y. T.; Jiang, Z. F.; Xu, F. C.; Xian, Q. M.; Sun, C.; Tong, Q.; Zou, W. X.; Duan, X. G.; Wang, S. B. CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption. Appl. Catal. B Environ.2019, 259, 118072.

    CAS  Google Scholar 

  212. [212]

    Liu, D.; Zhang, S.; Wang, J. M.; Peng, T. Y.; Li, R. J. Direct Z-scheme 2D/2D photocatalyst based on ultrathin g-C3N4 and WO3 nanosheets for efficient visible-light-driven H2 generation. ACS Appl. Mater. Interfaces2019, 11, 27913–27923.

    CAS  Google Scholar 

  213. [213]

    Lu, D. Z.; Wang, H. M.; Zhao, X. N.; Kondamareddy, K. K.; Ding, J. Q.; Li, C. H.; Fang, P. F. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustainable Chem. Eng.2017, 5, 1436–1445.

    CAS  Google Scholar 

  214. [214]

    Chen, W.; Yan, R. Q.; Zhu, J. Q.; Huang, G. B.; Chen, Z. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator. Appl. Surf. Sci.2020, 504, 144406.

    CAS  Google Scholar 

  215. [215]

    Ding, Y.; Wei, D. Q.; He, R.; Yuan, R. S.; Xie, T. F.; Li, Z. H. Rational design of Z-scheme PtS-ZnIn2S4/WO3-MnO2 for overall photo-catalytic water splitting under visible light. Appl. Catal. B Environ.2019, 258, 117948.

    CAS  Google Scholar 

  216. [216]

    Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal.2013, 3, 1486–1503.

    CAS  Google Scholar 

  217. [217]

    Li, H. J.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Z-scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv. Sci.2016, 3, 1500389.

    Google Scholar 

  218. [218]

    Yuan, Y. J.; Chen, D. Q.; Yang, S. H.; Yang, L. X.; Wang, J. J.; Cao, D. P.; Tu, W. G.; Yu, Z. T.; Zou, Z. G. Constructing noble-metal-free Z-scheme photocatalytic overall water splitting systems using MoS2 nanosheet modified CdS as a H2 evolution photocatalyst. J. Mater. Chem. A2017, 5, 21205–21213.

    CAS  Google Scholar 

  219. [219]

    Lu, K. Q.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Earth-abundant MoS2 and cobalt phosphate dual cocatalysts on 1D CdS nanowires for boosting photocatalytic hydrogen production. Langmuir2019, 35, 11056–11065.

    CAS  Google Scholar 

  220. [220]

    Tian, L.; Yang, X. F.; Cui, X. K.; Liu, Q. Q.; Tang, H. Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance. Appl. Surf. Sci.2019, 463, 9–17.

    CAS  Google Scholar 

  221. [221]

    Wang, Z. H.; Xu, X. J.; Si, Z. C.; Liu, L. P.; Liu, Y. X.; He, Y. H.; Ran, R.; Weng, D. In situ synthesized MoS2/Ag dots/Ag3PO4 Z-scheme photocatalysts with ultrahigh activity for oxygen evolution under visible light irradiation. Appl. Surf. Sci.2018, 450, 441–450.

    CAS  Google Scholar 

  222. [222]

    Wei, D. Q.; Ding, Y.; Li, Z. H. Noble-metal-free Z-Scheme MoS2-CdS/WO3-MnO2 nanocomposites for photocatalytic overall water splitting under visible light. Int. J. Hydrogen Energy2020, 45, 17320–17328.

    CAS  Google Scholar 

  223. [223]

    Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q., Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano2014, 8, 7078–7087.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Research Grants Council of Hong Kong (No. 15304519), the National Natural Science Foundation of China (No. 11904306), and the Hong Kong Polytechnic University (No. 1-ZVH9). The authors also thank the Fundamental Research Funds for the Central Universities (Nos. 2019B02414 and 2019B44214) and PAPD, and Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (No. KLIEEE-18-02). The authors thank Dr. Romana Schirhagl and Miss Chuyi Xie for their careful proofreading of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dangyuan Lei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gan, X., Lei, D., Ye, R. et al. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Res. 14, 2003–2022 (2021). https://doi.org/10.1007/s12274-020-2955-x

Download citation

Keywords

  • two-dimensional semiconductors
  • transition metal dichalcogenides
  • mixed-dimensional heterostructures
  • solar photocatalysis
  • dimensionality and interface engineering