Skip to main content

Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation

Abstract

Biologically, there exist two kinds of syntheses: photosynthesis and ATP-driven biosynthesis. The light harvesting of photosynthesis is known to achieve an efficiency of ∼ 95% by the quantum energy transfer of photons. However, how the ATP-driven biosynthesis reaches its high efficiency still remains unknown. Deoxynucleotide triphosphates (dNTPs) in polymerase chain reaction (PCR) adopt the identical way of ATP to release their energy, and thus can be employed to explore the ATP energy process. Here, using a gold nanoparticle (AuNP) enhanced PCR (AuNP-PCR), we demonstrate that the energy released by phosphoanhydride-bond (PB) hydrolysis of dNTPs is in form of photons (PB-photons) to drive DNA replication, by modulating their resonance with the average inter-AuNP distance (D). The experimental results show that both the efficiency and yield of PCR periodically oscillate with D increasing, indicating a quantized process, but not simply a thermal one. The PB-photon wavelength is further determined to 8.4 µm. All these results support that the release, transfer and utilization of bioenergy are in the form of photons. Our findings of ATP-energy quantum conversion will open a new avenue to the studies of high-efficiency bioenergy utilization, biochemistry, biological quantum physics, and even brain sciences.

This is a preview of subscription content, access via your institution.

References

  1. McConnell, I.; Li, G. H.; Brudvig, G. W. Energy conversion in natural and artificial photosynthesis. Chem. Biol.2010, 17, 434–447.

    CAS  Article  Google Scholar 

  2. Chen, Y. C.; Song, B.; Leggett, A. J.; Ao, P.; Zhu, X. M. Resonant confinement of an excitonic polariton and ultraefficient light harvest in artificial photosynthesis. Phys. Rev. Lett.2019, 122, 257402.

    CAS  Article  Google Scholar 

  3. Westheimer, F. H. Why nature chose phosphates. Science1987, 235, 1173–1178.

    CAS  Article  Google Scholar 

  4. Kornberg, A.; Rao, N. N.; Ault-Riché, D. Inorganic polyphosphate: A molecule of many functions. Annu. Rev. Biochem.1999, 68, 89–125.

    CAS  Article  Google Scholar 

  5. Frey, P. A.; Arabshahi, A. Standard free energy change for the hydrolysis of the α, β-phosphoanhydride bridge in ATP. Biochemistry1995, 34, 11307–11310.

    CAS  Article  Google Scholar 

  6. Kumar, S.; Boone, K.; Tuszyński, J.; Barclay, P.; Simon, C. Possible existence of optical communication channels in the brain. Sci. Rep.2016, 6, 36508.

    CAS  Article  Google Scholar 

  7. Zangari, A.; Micheli, D.; Galeazzi, R.; Tozzi, A. Node of ranvier as an array of bio-nanoantennas for infrared communication in nerve tissue. Sci. Rep.2018, 8, 539.

    Article  Google Scholar 

  8. Liu, G. Z.; Chang, C.; Qiao, Z.; Wu, K. J.; Zhu, Z.; Cui, G. Q.; Peng, W. Y.; Tang, Y. Z.; Li, J.; Fan, C. H. Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range. Adv. Funct. Mater.2019, 29, 1807862.

    Article  Google Scholar 

  9. Zhang, X. Q.; Antonietti, M.; Jiang, L. Bioinformation transformation: From ionics to quantum ionics. Sci. China Mater.2020, 63, 167–171.

    Article  Google Scholar 

  10. Zhu, Z.; Chang, C.; Shu, Y. S.; Song, B. Transition to a superpermeation phase of confined water induced by a terahertz electromagnetic wave. J. Phys. Chem. Lett.2020, 11, 256–262.

    CAS  Article  Google Scholar 

  11. Song, B.; Shu, Y. S. Cell vibron polariton resonantly self-confined in the myelin sheath of nerve. Nano Res.2020, 13, 38–44.

    CAS  Article  Google Scholar 

  12. Mei, W. P. About the nature of biophotons. J. Biol. Syst.1994, 2, 25–42.

    Article  Google Scholar 

  13. Inaba, H. Super-high sensitivity systems for detection and spectral analysis of ultraweak photon emission from biological cell cells and tissues. Experientia1988, 44, 550–559.

    CAS  Article  Google Scholar 

  14. Salari, V.; Valian, H.; Bassereh, H.; Bókkon, I.; Barkhordari, A. Ultraweak photon emission in the brain. J. Integr. Neurosci.2015, 14, 419–429.

    CAS  Article  Google Scholar 

  15. Thar, R.; Kühl, M. Propagation of electromagnetic radiation in mitochondria?. J. Theor. Biol.2004, 230, 261–270.

    CAS  Article  Google Scholar 

  16. Zarkeshian, P.; Kumar, S.; Tuszynski, J.; Barclay, P.; Simon, C. Are there optical communication channels in the brain?. Front. Biosci.2018, 23, 1407–1421.

    CAS  Article  Google Scholar 

  17. Saiki, R. K.; Gelfand, D. H.; Stoffel, S.; Scharf, S. J.; Higuchi, R.; Horn, G. T.; Mullis, K. B.; Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science1988, 239, 487–491.

    CAS  Article  Google Scholar 

  18. Burke, C. R.; Lupták, A. DNA synthesis from diphosphate substrates by DNA polymerases. Proc. Natl. Acad. Sci. USA2018, 115, 980–985.

    CAS  Article  Google Scholar 

  19. Kottur, J.; Nair, D. T. Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction. Nucleic Acids Res.2018, 46, 5875–5885.

    CAS  Article  Google Scholar 

  20. Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Nat. Biotechnol.1993, 11, 1026–1030.

    CAS  Article  Google Scholar 

  21. Li, H. K.; Huang, J. H.; Lv, J. H.; An, H. J.; Zhang, X. D.; Zhang, Z. Z.; Fan, C. H.; Hu, J. Nanoparticle PCR: Nanogold-assisted PCR with enhanced specificity. Angew. Chem., Int. Ed.2005, 44, 5100–5103.

    CAS  Article  Google Scholar 

  22. Fan, C. H.; Wang, S.; Hong, J. W.; Bazan, G. C.; Plaxco, K. W.; Heeger, A. J. Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc. Natl. Acad. Sci. USA2003, 100, 6297–6301.

    CAS  Article  Google Scholar 

  23. Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev.2006, 35, 209–217.

    CAS  Article  Google Scholar 

  24. Kakazu, K.; Kim, Y. S. Quantization of electromagnetic fields in cavities and spontaneous emission. Phys. Rev. A1994, 50, 1830–1839.

    CAS  Article  Google Scholar 

  25. Movasaghi, Z.; Rehman, S.; ur Rehman, D. I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev.2008, 43, 134–179.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFE0205501), the National Natural Science Foundation of China Projects (Nos. 51763019, U1832125, and 31630029) and the National Super-computer Center in Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang, Lei Jiang or Bo Song.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, N., Peng, D., Zhang, X. et al. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation. Nano Res. 14, 40–45 (2021). https://doi.org/10.1007/s12274-020-2937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2937-z

Keywords

  • intrinsic biophoton
  • DNA replication
  • polymerase chain reaction (PCR)
  • gold nanoparticle
  • high-efficiency energy utilization
  • biological quantum physics