Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires

Abstract

Multimetallic nanowires with long-range atomic ordering hold the promise of unique physicochemical properties in many applications. Here we demonstrate the synthesis and study the stability of Cu3Au intermetallic nanowires. The synthesis is achieved by using Cu@Au core-shell nanowires as precursors. With appropriate Cu/Au stoichiometry, the Cu@Au core-shell nanowires are transformed into fully ordered Cu3Au nanowires under thermal annealing. Thermally-driven atom diffusion accounts for this transformation as revealed by X-ray diffraction and electron microscopy studies. The twin boundaries abundant in the Cu@Au core-shell nanowires facilitate the ordering process. The resulting Cu3Au intermetallic nanowires have uniform and accurate atomic positioning in the crystal lattice, which enhances the nobility of Cu. No obvious copper oxides are observed in fully ordered Cu3Au nanowires after annealing in air at 200 °C, a temperature that is much higher than those observed in Cu@Au core-shell and pure Cu nanowires. This work opens up an opportunity for further research into the development and applications of intermetallic nanowires.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science2016, 352, 1565–1569.

    CAS  Google Scholar 

  2. [2]

    Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science2018, 359, 1489–1494.

    CAS  Google Scholar 

  3. [3]

    Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev.2011, 111, 3713–3735.

    CAS  Google Scholar 

  4. [4]

    Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruna, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc.2004, 126, 4043–4049.

    CAS  Google Scholar 

  5. [5]

    Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater.2016, 15, 1188–1194.

    CAS  Google Scholar 

  6. [6]

    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014, 343, 1339–1343.

    CAS  Google Scholar 

  7. [7]

    Rößner, L.; Armbrüster, M. Electrochemical energy conversion on intermetallic compounds: A review. ACS Catal.2019, 9, 2018–2062.

    Google Scholar 

  8. [8]

    Escudero-Escribano, M.; Verdaguer-Casadevall, A.; Malacrida, P.; Grønbjerg, U.; Knudsen, B. P.; Jepsen, A. K.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J. Am. Chem. Soc.2012, 134, 16476–16479.

    CAS  Google Scholar 

  9. [9]

    Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater.2013, 12, 81–87.

    CAS  Google Scholar 

  10. [10]

    Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater.2017, 29, 1605997.

    Google Scholar 

  11. [11]

    Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruna, H. D. Pt-decorated composition-tunable Pd-Fe@Pd/C core-shell nanoparticles with enhanced electrocatalytic activity towards the oxygen reduction reaction. J. Am. Chem. Soc.2018, 140, 7248–7255.

    CAS  Google Scholar 

  12. [12]

    Bauer, J. C.; Chen, X. L.; Liu, Q. S.; Phan, T. H.; Schaak, R. E. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis. J. Mater. Chem.2008, 18, 275–282.

    CAS  Google Scholar 

  13. [13]

    Wang, C. Y.; Chen, D. P.; Sang, X. H.; Unocic, R. R.; Skrabalak, S. E. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano2016, 10, 6345–6353.

    CAS  Google Scholar 

  14. [14]

    Lu, N.; Wang, J. G.; Xie, S. F.; Xia, Y. N.; Kim, M. J. Enhanced shape stability of Pd-Rh core-frame nanocubes at elevated temperature: In situ heating transmission electron microscopy. Chem. Commun.2013, 49, 11806–11808.

    CAS  Google Scholar 

  15. [15]

    Li, J. R.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc.2018, 140, 2926–2932.

    CAS  Google Scholar 

  16. [16]

    Maligal-Ganesh, R. V.; Xiao, C. X.; Goh, T. W.; Wang, L. L.; Gustafson, J.; Pei, Y. C.; Qi, Z. Y.; Johnson, D. D.; Zhang, S. R.; Tao, F. et al. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation. ACS Catal.2016, 6, 1754–1763.

    CAS  Google Scholar 

  17. [17]

    Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc.2015, 137, 15478–15485.

    CAS  Google Scholar 

  18. [18]

    Liang, J. S.; Li, N.; Zhao, Z. L.; Ma, L.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Du, Y. P.; Lu, G. et al. Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angew. Chem.2019, 131, 15617–15623.

    Google Scholar 

  19. [19]

    Wang, T. Y.; Liang, J. S.; Zhao, Z. L.; Li, S. Z.; Lu, G.; Xia, Z. C.; Wang, C.; Luo, J. H.; Han, J. T.; Ma, C. et al. Sub-6 nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain. Adv. Energy Mater.2019, 9, 1803771.

    Google Scholar 

  20. [20]

    Wang, C.; Hou, Y. L.; Kim, J.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem., Int. Ed.2007, 46, 6333–6335.

    CAS  Google Scholar 

  21. [21]

    Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science2016, 354, 1410–1414.

    CAS  Google Scholar 

  22. [22]

    Chen, Q. L.; Zhang, J. W.; Jia, Y. Y.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale2014, 6, 7019–7024.

    CAS  Google Scholar 

  23. [23]

    Chou, N. H.; Schaak, R. E. Shape-controlled conversion of β-Sn nanocrystals into intermetallic M-Sn (M = Fe, Co, Ni, Pd) nanocrystals. J. Am. Chem. Soc.2007, 129, 7339–7345.

    CAS  Google Scholar 

  24. [24]

    Gao, Q.; Ju, Y. M.; An, D.; Gao, M. R.; Cui, C. H.; Liu, J. W.; Cong, H. P.; Yu, S. H. Shape-controlled synthesis of monodisperse PdCu nanocubes and their electrocatalytic Properties. ChemSusChem2013, 6, 1878–1882.

    CAS  Google Scholar 

  25. [25]

    Liao, H. B.; Zhu, J. H.; Hou, Y. L. Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. Nanoscale2014, 6, 1049–1055.

    CAS  Google Scholar 

  26. [26]

    Luo, Z. S.; Lu, J. M.; Flox, C.; Nafria, R.; Genç, A.; Arbiol, J.; Llorca, J.; Ibáñez, M.; Morante, J. R.; Cabot, A. Pd2Sn [010] nanorods as a highly active and stable ethanol oxidation catalyst. J. Mater. Chem. A2016, 4, 16706–16713.

    CAS  Google Scholar 

  27. [27]

    Maksimuk, S.; Yang, S. C.; Peng, Z. M.; Yang, H. Synthesis and characterization of ordered intermetallic PtPb nanorods. J. Am. Chem. Soc.2007, 129, 8684–8685.

    CAS  Google Scholar 

  28. [28]

    Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y. E.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater.2016, 28, 2540–2546.

    CAS  Google Scholar 

  29. [29]

    Liu, S. J.; Sun, Z. H.; Liu, Q. H.; Wu, L. H.; Huang, Y. Y.; Yao, T.; Zhang, J.; Hu, T. D.; Ge, M. R.; Hu, F. C. et al. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano2014, 8, 1886–1892.

    CAS  Google Scholar 

  30. [30]

    Sra, A. K.; Ewers, T. D.; Schaak, R. E. Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks. Chem. Mater.2005, 17, 758–766.

    CAS  Google Scholar 

  31. [31]

    Yang, J. H.; Chng, L. L.; Yang, X. F.; Chen, X. J.; Ying, J. Y. Multiply-twinned intermetallic AuCu pentagonal nanorods. Chem. Commun.2014, 50, 1141–1143.

    CAS  Google Scholar 

  32. [32]

    Barth, S.; Boland, J. J.; Holmes, J. D. Defect transfer from nanoparticles to nanowires. Nano Lett.2011, 11, 1550–1555.

    CAS  Google Scholar 

  33. [33]

    Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett.2015, 15, 2468–2473.

    CAS  Google Scholar 

  34. [34]

    Li, J. R.; Sun, S. H. Intermetallic nanoparticles: Synthetic control and their enhanced electrocatalysis. Acc. Chem. Res.2019, 52, 2015–2025.

    CAS  Google Scholar 

  35. [35]

    Cui, F.; Yu, Y.; Dou, L. T.; Sun, J. W.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. D. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett.2015, 15, 7610–7615.

    CAS  Google Scholar 

  36. [36]

    Jin, M. S.; He, G. N.; Zhang, H.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Shape — controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem., Int. Ed.2011, 50, 10560–10564.

    CAS  Google Scholar 

  37. [37]

    Yang, H. J.; He, S. Y.; Tuan, H. Y. Self-seeded growth of five-fold twinned copper nanowires: Mechanistic study, characterization, and SERS applications. Langmuir2014, 30, 602–610.

    CAS  Google Scholar 

  38. [38]

    Cui, F.; Dou, L. T.; Yang, Q.; Yu, Y.; Niu, Z. Q.; Sun, Y. C.; Liu, H.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Benzoin radicals as reducing agent for synthesizing ultrathin copper nanowires. J. Am. Chem. Soc.2017, 139, 3027–3032.

    CAS  Google Scholar 

  39. [39]

    Niu, Z. Q.; Cui, F.; Kuttner, E.; Xie, C. L.; Chen, H.; Sun, Y. C.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Synthesis of silver nanowires with reduced diameters using benzoin-derived radicals to make transparent conductors with high transparency and low haze. Nano Lett.2018, 18, 5329–5334.

    CAS  Google Scholar 

  40. [40]

    Sun, Y. G.; Ren, Y.; Liu, Y. Z.; Wen, J. G.; Okasinski, J. S.; Miller, D. J. Ambient-stable tetragonal phase in silver nanostructures. Nat. Commun.2012, 3, 971.

    Google Scholar 

  41. [41]

    Niu, Z. Q.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y. C.; Khanarian, G.; Kim, D.; Dou, L. T.; Dehestani, A.; Schierle-Arndt, K. et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J. Am. Chem. Soc.2017, 139, 7348–7354.

    CAS  Google Scholar 

  42. [42]

    Bonneaux, J.; Guymont, M. Study of the order-disorder transition series in AuCu by in-situ temperature electron microscopy. Intermetallics1999, 7, 797–805.

    CAS  Google Scholar 

  43. [43]

    Chen, H. Q.; Nishijima, M.; Wang, G. L.; Khene, S.; Zhu, M. Q.; Deng, X.; Zhang, X. M.; Wen, W.; Luo, Y.; He, Q. G. The ordered and disordered nano-intermetallic AuCu/C catalysts for the oxygen reduction reaction: The differences of the electrochemical performance. J. Electrochem. Soc.2017, 164, F1654–F1661.

    CAS  Google Scholar 

  44. [44]

    Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc.2017, 139, 8329–8336.

    CAS  Google Scholar 

  45. [45]

    Tee, S. Y.; Ye, E. Y.; Pan, P. H.; Lee, C. J. J.; Hui, H. K.; Zhang, S. Y.; Koh, L. D.; Dong, Z. L.; Han, M. Y. Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale2015, 7, 11190–11198.

    CAS  Google Scholar 

  46. [46]

    Jacobsson, P.; Sundqvist, B. Pressure dependence of the thermal and electrical conductivities of the intermetallic compounds AuCu and AuCu3. J. Phys. Chem. Solids1988, 49, 441–450.

    CAS  Google Scholar 

  47. [47]

    Johansson, C. H.; Linde, J. O. Röntgenographische und elektrische Untersuchungen des CuAu-Systems. Annalen der Physik1936, 417, 1–48.

    Google Scholar 

  48. [48]

    Parks, B. W. Jr.; Fritz, J. D.; Pickering, H. W. The difference in the electrochemical behavior of the ordered and disordered phases of Cu3Au. Scr. Metall.1989, 23, 951–956.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by BASF Corporation (Award Number 53093). Work at the National Center for Electron Microscopy (NCEM), the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Aberration-corrected STEM was supported by the Center for high-resolution Electron Microscopy (ChEM) at ShanghaiTech University. T. L. acknowledges fellowship from Suzhou Industrial Park. We acknowledge P. Alivisatos for access to the Bruker D-8 Diffractometer for XRD analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Chen, S., Yu, Y. et al. Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Res. 13, 2564–2569 (2020). https://doi.org/10.1007/s12274-020-2900-z

Download citation

Keywords

  • intermetallic nanocrystal
  • shape control
  • nanowire
  • Cu-Au
  • stability