Skip to main content

Local modulation of excitons and trions in monolayer WS2 by carbon nanotubes


Mixed dimensional van der Waals (vdW) heterostructures constructed by one-dimensional (1D) and two-dimensional (2D) materials exhibit extra degree of freedom to modulate the electronic and optical properties due to the combination of different dimensionalities. The charge transfer at the interface between 1D and 2D materials plays a crucial role in the optoelectronic properties and performance of the heterostructure-based devices. Here, we stacked single-walled carbon nanotubes (SWNTs) on monolayer WS2 for a mixed dimensional vdW heterostructure, and investigated the local modulation of excitions and trions in WS2 by SWNTs. Different directions of charge transfer between SWNTs and WS2 are evidenced by the photoluminescence (PL) spectra of WS2. The PL intensity can be either enhanced or weakened by individual SWNTs. In our work, the PL intensity of WS2 is enhanced and the exciton peak position heterostructure is red-shifted about 3 meV due to the charge transfer from WS2 to an individual SWNT (SWNT#1). The change of PL by another SWNT (SWNT#2) can not be well-resolved in far-field, but scanning near-field optical microscope (SNOM) measurements show that the PL intensity of WS2 is weakened by the SWNT. The peak position of exciton is blue-shifted by ~ 1 meV while that of trion is redshifted by ~ 1 meV due to the charge transfer from the SWNT to WS2. These results give insight into the charge transfer at the interface of SWNT/WS2 heterostructure, and can be useful for design of optoelectronic devices based on mixed dimensional vdW heterostructures.

This is a preview of subscription content, access via your institution.


  1. [1]

    Sun, Y.; Zhong, W.; Wang, Y. Q.; Xu, X. B.; Wang, T. T.; Wu, L. Q.; Du, Y. W. MoS2-based mixed-dimensional van der Waals heterostructures: A new platform for excellent and controllable microwave-absorption performance. ACS Appl. Mater. Interfaces2017, 9, 34243–34255.

    CAS  Article  Google Scholar 

  2. [2]

    Jariwala, D.; Sangwan, V. K.; Wu, C. C.; Prabhumirashi, P. L.; Geier, M. L.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. USA2013, 110, 18076–18080.

    CAS  Article  Google Scholar 

  3. [3]

    Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science2016, 353, aac9439.

    CAS  Article  Google Scholar 

  4. [4]

    Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res.2016, 9, 1543–1560.

    CAS  Article  Google Scholar 

  5. [5]

    Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater.2017, 16, 170–181.

    CAS  Article  Google Scholar 

  6. [6]

    Wu, H. L.; Si, H. N.; Zhang, Z. H.; Kang, Z.; Wu, P. W.; Zhou, L. X.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci.2018, 5, 1801219.

    Article  Google Scholar 

  7. [7]

    Sun, Y.; Xu, J. L.; Qiao, W.; Xu, X. B.; Zhang, W. L.; Zhang, K. Y.; Zhang, X.; Chen, X.; Zhong, W.; Du, Y. W. Constructing two-, zero-, and one-dimensional integrated nanostructures: An effective strategy for high microwave absorption performance. ACS Appl. Mater. Interfaces2016, 8, 31878–31886.

    CAS  Article  Google Scholar 

  8. [8]

    Shang, H. M.; Chen, H. Y.; Dai, M. L.; Hu, Y. X.; Gao, F.; Yang, H. H.; Xu, B.; Zhang, S. C.; Tan, B. Y.; Zhang, X. et al. A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horiz.2020, 5, 564–572.

    CAS  Article  Google Scholar 

  9. [9]

    Qin, J. K.; Yan, H.; Qiu, G.; Si, M. W.; Miao, P.; Duan, Y. Q.; Shao, W. Z.; Zhen, L.; Xu, C. Y.; Ye, P. D. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res.2019, 12, 669–674.

    CAS  Article  Google Scholar 

  10. [10]

    Henning, A.; Sangwan, V. K.; Bergeron, H.; Balla, I.; Sun, Z. Y.; Hersam, M. C.; Lauhon, L. J. Charge separation at mixed-dimensional single and multilayer MoS2/silicon nanowire heterojunctions. ACS Appl. Mater. Interfaces2018, 10, 16760–16767.

    CAS  Article  Google Scholar 

  11. [11]

    Park, S.; Vosguerichian, M.; Bao, Z. A. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale2013, 5, 1727–1752.

    CAS  Article  Google Scholar 

  12. [12]

    Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett.2003, 3, 1235–1238.

    CAS  Article  Google Scholar 

  13. [13]

    Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun.2015, 6, 8589.

    CAS  Article  Google Scholar 

  14. [14]

    Zhang, K.; Wei, Y.; Zhang, J.; Ma, H.; Yang, X. H.; Lu, G. T.; Zhang, K. N.; Li, Q. Q.; Jiang, K. L.; Fan, S. S. Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. Proc. Natl. Acad. Sci. USA2019, 116, 6586–6593.

    CAS  Article  Google Scholar 

  15. [15]

    Liu, C.; Hong, H.; Wang, Q. H.; Liu, P.; Zuo, Y. G.; Liang, J.; Cheng, Y.; Zhou, X.; Wang, J. H.; Zhao, Y. et al. Strong-coupled hybrid structure of carbon nanotube and MoS2 monolayer with ultrafast interfacial charge transfer. Nanoscale2019, 11, 17195–17200.

    CAS  Article  Google Scholar 

  16. [16]

    Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi-Rapid Res. Lett.2015, 9, 457–461.

    CAS  Article  Google Scholar 

  17. [17]

    Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J. C. et al. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep.2013, 3, 1755.

    Article  Google Scholar 

  18. [18]

    Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett.2015, 15, 2992–2997.

    CAS  Article  Google Scholar 

  19. [19]

    Shi, H. L.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B2013, 87, 155304.

    Article  Google Scholar 

  20. [20]

    Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep.2015, 5, 9218.

    Article  Google Scholar 

  21. [21]

    Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano2015, 9, 647–655.

    CAS  Article  Google Scholar 

  22. [22]

    Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett.2014, 113, 076802.

    Article  Google Scholar 

  23. [23]

    Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B2013, 88, 245403.

    Article  Google Scholar 

  24. [24]

    Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano2014, 8, 11320–11329.

    CAS  Article  Google Scholar 

  25. [25]

    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater.2013, 12, 207–211.

    CAS  Article  Google Scholar 

  26. [26]

    Ko, P. J.; Abderrahmane, A.; Thu, T. V.; Ortega, D.; Takamura, T.; Sandhu, A. Laser power dependent optical properties of mono- and few-layer MoS2. J. Nanosci. Nanotechnol.2015, 15, 6843–6846.

    CAS  Article  Google Scholar 

  27. [27]

    McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep.2016, 6, 35154.

    CAS  Article  Google Scholar 

  28. [28]

    Wang, X. H.; Ning, J. Q.; Su, Z. C.; Zheng, C. C.; Zhu, B. R.; Xie, L.; Wu, H. S.; Xu, S. J. Photoinduced doping and photoluminescence signature in an exfoliated WS2 monolayer semiconductor. RSC Adv.2016, 6, 27677–27681.

    CAS  Article  Google Scholar 

  29. [29]

    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett.2013, 13, 5944–5948.

    CAS  Article  Google Scholar 

  30. [30]

    Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun.2013, 4, 1474.

    Article  Google Scholar 

  31. [31]

    Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B1992, 45, 8989–8994.

    CAS  Article  Google Scholar 

  32. [32]

    Huard, V.; Cox, R. T.; Saminadayar, K.; Arnoult, A.; Tatarenko, S. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron gas. Phys. Rev. Lett.2000, 84, 187–190.

    CAS  Article  Google Scholar 

  33. [33]

    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep.2005, 409, 47–99.

    Article  Google Scholar 

  34. [34]

    Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B2013, 87, 165402.

    Article  Google Scholar 

  35. [35]

    Cabria, I.; Mintmire, J. W.; White, C. T. Metallic and semiconducting narrow carbon nanotubes. Phys. Rev. B2003, 67, 121406(R).

    Article  Google Scholar 

  36. [36]

    Itkis, M. E.; Niyogi, S.; Meng, M. E.; Hamon, M. A.; Hu, H.; Haddon, R. C. Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes. Nano Lett.2002, 2, 155–159.

    CAS  Article  Google Scholar 

  37. [37]

    Finkelstein, G.; Shtrikman, H.; Bar-Joseph, I. I. Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett.1995, 74, 976–979.

    CAS  Article  Google Scholar 

  38. [38]

    Currie, M.; Hanbicki, A. T.; Kioseoglou, G.; Jonker, B. T. Optical control of charged exciton states in tungsten disulfide. Appl. Phys. Lett.2015, 106, 201907.

    Article  Google Scholar 

Download references


This work was financially supported by the National Basic Research Program of China (Nos. 2018YFA0703502 and 2016YFA0200104) and the National Natural Science Foundation of China (Nos. 51720105003, 21790052, 21573004 and 21974004).

Author information



Corresponding authors

Correspondence to Jin Zhang or Lianming Tong.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Xu, S., Liu, W. et al. Local modulation of excitons and trions in monolayer WS2 by carbon nanotubes. Nano Res. 13, 1982–1987 (2020).

Download citation


  • WS2
  • single-walled carbon nanotube (SWNT)
  • mixed dimensional heterostructure
  • excitons
  • trion