Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate

Abstract

Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe2 usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemical vapor deposition (CVD) process as a catalyst to assist the growth of WSe2 and successfully achieved highly aligned monolayer WSe2 triangular flakes grown on c-plane sapphire with large domain sizes (130 µm) and fast growth rate (4.3 µm·s−1). When the aligned WSe2 domains merged together, a continuous monolayer WSe2 was formed with good uniformity. After transferring to Si/SiO2 substrates, field effect transistors were fabricated on the continuous monolayer WSe2, and an average mobility of 12 cm2·V−1·s−1 was achieved, demonstrating the good quality of the material. This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science2016, 353, aac9439.

    CAS  Google Scholar 

  2. [2]

    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon.2014, 8, 899–907.

    CAS  Google Scholar 

  3. [3]

    Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett.2012, 12, 3788–3792.

    CAS  Google Scholar 

  4. [4]

    Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett.2013, 13, 1983–1990.

    CAS  Google Scholar 

  5. [5]

    Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano2015, 9, 7383–7391.

    CAS  Google Scholar 

  6. [6]

    Liu, B. L.; Ma, Y. Q.; Zhang, A. Y.; Chen, L.; Abbas, A. N.; Liu, Y. H.; Shen, C. F.; Wan, H. C.; Zhou, C. W. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano2016, 10, 5153–5160.

    CAS  Google Scholar 

  7. [7]

    Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett.2015, 15, 2852–2862.

    CAS  Google Scholar 

  8. [8]

    Nam, H.; Oh, B. R.; Chen, M. K.; Wi, S. J.; Li, D.; Kurabayashi, K.; Liang, X. G. Fabrication and comparison of MoS2 and WSe2 field-effect transistor biosensors. J. Vac. Sci. Technol. B2015, 33, 06FG01.

    Google Scholar 

  9. [9]

    Wu, F. Q.; Chen, L.; Zhang, A. Y.; Hong, Y. L.; Shih, N. Y.; Cho, S. Y.; Drake, G. A.; Fleetham, T.; Cong, S.; Cao, X. et al. High-performance sub-micrometer channel WSe2 field-effect transistors prepared using a flood-dike printing method. ACS Nano2017, 11, 12536–12546.

    CAS  Google Scholar 

  10. [10]

    Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science2017, 356, 69–73.

    CAS  Google Scholar 

  11. [11]

    Das, S.; Gulotty, R.; Sumant, A. V.; Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett.2014, 14, 2861–2866.

    CAS  Google Scholar 

  12. [12]

    Zheng, Z. Q.; Zhang, T. M.; Yao, J. D.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology2016, 27, 225501.

    Google Scholar 

  13. [13]

    Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano2014, 8, 923–930.

    CAS  Google Scholar 

  14. [14]

    Chen, J. Y.; Liu, B.; Liu, Y. P.; Tang, W.; Nai, C. T.; Li, L. J.; Zheng, J.; Gao, L. B.; Zheng, Y.; Shin, H. S. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater.2015, 27, 6722–6727.

    CAS  Google Scholar 

  15. [15]

    Li, S. S.; Wang, S. F.; Tang, D. M.; Zhao, W. J.; Xu, H. L.; Chu, L. Q.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today2015, 1, 60–66.

    Google Scholar 

  16. [16]

    Huang, J.; Yang, L.; Liu, D.; Chen, J.; Fu, Q.; Xiong, Y.; Lin, F.; Xiang, B. Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale2015, 7, 4193–4198.

    CAS  Google Scholar 

  17. [17]

    Zhang, X. T.; Choudhury, T. H.; Chubarov, M.; Xiang, Y.; Jariwala, B.; Zhang, F.; Alem, N.; Wang, G. C.; Robinson, J. A.; Redwing, J. M. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett.2018, 18, 1049–1056.

    CAS  Google Scholar 

  18. [18]

    Yu, H.; Yang, Z. Z.; Du, L. J.; Zhang, J.; Shi, J.; Chen, W.; Chen, P.; Liao, M. Z.; Zhao, J.; Meng, J. L. et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small2017, 13, 1603005.

    Google Scholar 

  19. [19]

    Chen, Z. X.; Liu, H. Q.; Chen, X. C.; Chu, G.; Chu, S.; Zhang, H. Wafer-size and single-crystal MoSe2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl. Mater. Interfaces2016, 8, 20267–20273.

    CAS  Google Scholar 

  20. [20]

    Ruzmetov, D.; Zhang, K. H.; Stan, G.; Kalanyan, B.; Bhimanapati, G. R.; Eichfeld, S. M.; Burke, R. A.; Shah, P. B.; O’Regan, T. P.; Crowne, F. J. et al. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano2016, 10, 3580–3588.

    CAS  Google Scholar 

  21. [21]

    Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P. H.; Kan, M. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett.2013, 13, 3870–3877.

    CAS  Google Scholar 

  22. [22]

    Ago, H.; Fukamachi, S.; Endo, H.; Solis-Fernandez, P.; Yunus, R. M.; Uchida, Y.; Panchal, V.; Kazakova, O.; Tsuji, M. Visualization of grain structure and boundaries of polycrystalline graphene and two-dimensional materials by epitaxial growth of transition metal dichalcogenides. ACS Nano2016, 10, 3233–3240.

    CAS  Google Scholar 

  23. [23]

    Eichfeld, S. M.; Hossain, L.; Lin, Y. C.; Piasecki, A. F.; Kupp, B.; Birdwell, A. G.; Burke, R. A.; Lu, N.; Peng, X.; Li, J. et al. Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano2015, 9, 2080–2087.

    CAS  Google Scholar 

  24. [24]

    Ago, H.; Endo, H.; Solís-Fernández, P.; Takizawa, R.; Ohta, Y.; Fujita, Y.; Yamamoto, K.; Tsuji, M. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces2015, 7, 5265–5273.

    CAS  Google Scholar 

  25. [25]

    Lu, C. I.; Butler, C. J.; Huang, J. K.; Hsing, C. R.; Yang, H. H.; Chu, Y. H.; Luo, C. H.; Sun, Y. C.; Hsu, S. H.; Yang, K. H. O. et al. Graphite edge controlled registration of monolayer MoS2 crystal orientation. Appl. Phys. Lett.2015, 106, 181904.

    Google Scholar 

  26. [26]

    Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. Large-area epitaxial monolayer MoS2. ACS Nano2015, 9, 4611–4620.

    CAS  Google Scholar 

  27. [27]

    Chen, L.; Liu, B. L.; Ge, M. Y.; Ma, Y. Q.; Abbas, A. N.; Zhou, C. W. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano2015, 9, 8368–8375.

    CAS  Google Scholar 

  28. [28]

    Aljarb, A.; Cao, Z.; Tang, H. L.; Huang, J. K.; Li, M. L.; Hu, W. J.; Cavallo, L.; Li, L. J. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano2017, 11, 9215–9222.

    CAS  Google Scholar 

  29. [29]

    Ly, T. H.; Chiu, M. H.; Li, M. Y.; Zhao, J.; Perello, D. J.; Cichocka, M. O.; Oh, H. M.; Chae, S. H.; Jeong, H. Y.; Yao, F. et al. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides. ACS Nano2014, 8, 11401–11408.

    CAS  Google Scholar 

  30. [30]

    Tsivion, D.; Schvartzman, M.; Popovitz-Biro, R.; von Huth, P.; Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science2011, 333, 1003–1007.

    CAS  Google Scholar 

  31. [31]

    Kurnosikov, O.; Pham Van, L.; Cousty, J. About anisotropy of atomic-scale height step on (0001) sapphire surface. Surf. Sci.2000, 459, 256–264.

    CAS  Google Scholar 

  32. [32]

    Heffelfinger, J. R.; Bench, M. W.; Carter, C. B. Steps and the structure of the (0001) α-alumina surface. Surf. Sci.1997, 370, L168–L172.

    CAS  Google Scholar 

  33. [33]

    Del Corro, E.; Terrones, H.; Elias, A.; Fantini, C.; Feng, S. M.; Nguyen, M. A.; Mallouk, T. E.; Terrones, M.; Pimenta, M. A. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano2014, 8, 9629–9635.

    CAS  Google Scholar 

  34. [34]

    Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express2013, 21, 4908–4916.

    CAS  Google Scholar 

  35. [35]

    Xu, K.; Wang, Z. X.; Du, X. L.; Safdar, M.; Jiang, C.; He, J. Atomic-layer triangular WSe2 sheets: Synthesis and layer-dependent photoluminescence property. Nanotechnology2013, 24, 465705.

    Google Scholar 

  36. [36]

    Li, Y.; Hao, S. Q.; DiStefano, J. G.; Murthy, A. A.; Hanson, E. D.; Xu, Y. B.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. Site-specific positioning and patterning of MoS2 monolayers: The role of Au seeding. ACS Nano2018, 12, 8970–8976.

    CAS  Google Scholar 

  37. [37]

    Song, I.; Park, C.; Hong, M. S.; Baik, J.; Shin, H. J.; Choi, H. C. Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. Angew. Chem., Int. Ed.2014, 53, 1266–1269.

    CAS  Google Scholar 

  38. [38]

    Yun, S. J.; Chae, S. H.; Kim, H.; Park, J. C.; Park, J. H.; Han, G. H.; Lee, J. S.; Kim, S. M.; Oh, H. M.; Seok, J. et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano2015, 9, 5510–5519.

    CAS  Google Scholar 

  39. [39]

    Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano2013, 7, 6575–6582.

    CAS  Google Scholar 

  40. [40]

    Yang, C.; Wu, T. R.; Wang, H. M.; Zhang, X. F.; Shi, Z. Y.; Xie, X. M. Copper-vapor-catalyzed chemical vapor deposition of graphene on dielectric substrates. Appl. Phys. Lett.2017, 111, 043107.

    Google Scholar 

  41. [41]

    Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett.2012, 12, 1379–1384.

    CAS  Google Scholar 

  42. [42]

    Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun.2015, 6, 8569.

    CAS  Google Scholar 

  43. [43]

    Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z. T.; Yang, Z. Q.; Chen, M. L.; Liu, Z. B.; Ma, T.; Sun, D. M.; Ni, Z. H. et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater.2017, 29, 1700990.

    Google Scholar 

  44. [44]

    Liu, J. X.; Zeng, M. Q.; Wang, L. X.; Chen, Y. T.; Xing, Z.; Zhang, T.; Liu, Z.; Zuo, J. L.; Nan, F.; Mendes, R. G. et al. Ultrafast self-limited growth of strictly monolayer WSe2 crystals. Small2016, 12, 5741–5749.

    CAS  Google Scholar 

  45. [45]

    Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano2014, 8, 11522–11528.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the collaboration of this research with King Abdul-Aziz City for Science and Technology (KACST) via The Center of Excellence for Nanotechnologies (CEGN). A portion of the images and data used in this article were generated at the Core Center of Excellence in Nano Imaging (CNI), University of Southern California.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhang, A., Liu, Y. et al. Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate. Nano Res. 13, 2625–2631 (2020). https://doi.org/10.1007/s12274-020-2893-7

Download citation

Keywords

  • two-dimensional materials
  • transition metal dichalcogenides
  • tungsten diselenide (WSe2)
  • chemical vapor deposition
  • aligned growth