Controlled 2D growth of organic semiconductor crystals by suppressing “coffee-ring” effect

Abstract

Owing to enhanced charge transport efficiency arising from the ultrathin nature, two-dimensional (2D) organic semiconductor single crystals (OSSCs) are emerging as a fascinating platform for high-performance organic field-effect transistors (OFETs). However, “coffee-ring” effect induced by an evaporation-induced convective flow near the contact line hinders the large-area growth of 2D OSSCs through a solution process. Here, we develop a new strategy of suppressing the “coffee-ring” effect by using an organic semiconductor: polymer blend solution. With the high-viscosity polymer in the organic solution, the evaporation-induced flow is remarkably weakened, ensuring the uniform molecule spreading for the 2D growth of the OSSCs. As an example, wafer-scale growth of crystalline film consisting of few-layered 2,7-didecylbenzothienobenzothiophene (C10-BTBT) crystals was successfully accomplished via blade coating. OFETs based on the crystalline film exhibited a maximum hole mobility up to 12.6 cm2·V−1·s−1, along with an average hole mobility as high as 8.2 cm2·V−1·s−1. Our work provides a promising strategy for the large-area growth of 2D OSSCs toward high-performance organic electronics.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Yang, F. X.; Cheng, S. S.; Zhang, X. T.; Ren, X. C.; Li, R. J.; Dong, H. L.; Hu, W. P. 2D Organic materials for optoelectronic applications. Adv. Mater.2018, 30, 1702415.

    Article  CAS  Google Scholar 

  2. [2]

    Park, S. K.; Kim, J. H.; Park, S. Y. Organic 2D optoelectronic crystals: Charge transport, emerging functions, and their design perspective. Adv. Mater.2018, 30, 1704759.

    Article  CAS  Google Scholar 

  3. [3]

    Deng, W.; Zhang, X. J.; Jia, R. F.; Huang, L. M.; Zhang, X. H.; Jie, J. S. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system. NPG Asia Mater.2019, 11, 77.

    Article  CAS  Google Scholar 

  4. [4]

    Zhang, Y. H.; Qiao, J. S.; Gao, S.; Hu, F. R.; He, D. W.; Wu, B.; Yang, Z. Y.; Xu, B. C.; Li, Y.; Shi, Y. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett.2016, 116, 016602.

    Article  CAS  Google Scholar 

  5. [5]

    Zhao, H. J.; Zhao, Y. B.; Song, Y. X.; Zhou, M.; Lv, W.; Tao, L.; Feng, Y. Z.; Song, B. Y.; Ma, Y.; Zhang, J. Q. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat. Commun.2019, 10, 5589.

    Article  CAS  Google Scholar 

  6. [6]

    Yamamura, A.; Watanabe, S.; Uno, M.; Mitani, M.; Mitsui, C.; Tsurumi, J.; Isahaya, N.; Kanaoka, Y.; Okamoto, T.; Takeya, J. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv.2018, 4, eaao5758.

    Article  CAS  Google Scholar 

  7. [7]

    Li, H. Y.; Shi, Y. J.; Han, G. C.; Liu, J.; Zhang, J.; Li, C. L.; Liu, J.; Yi, Y. P.; Li, T.; Gao, X. K. et al. Monolayer two-dimensional molecular crystals for an ultrasensitive OFET-based chemical sensor. Angew. Chem., Int. Ed.2020, 59, 4380–4384.

    Article  CAS  Google Scholar 

  8. [8]

    Chen, H. L.; Dong, S. H.; Bai, M. L.; Cheng, N. Y.; Wang, H.; Li, M. L.; Du, H. W.; Hu, S. X.; Yang, Y. L.; Yang, T. Y. et al. Solution-Processable, low-voltage, and high-performance monolayer field-effect transistors with aqueous stability and high sensitivity. Adv. Mater.2015, 27, 2113–2120.

    Article  CAS  Google Scholar 

  9. [9]

    Peng, B. Y.; Huang, S. Y.; Zhou, Z. W.; Chan, P. K. L. Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater.2017, 27, 1700999.

    Article  CAS  Google Scholar 

  10. [10]

    He, D. W.; Qiao, J. S.; Zhang, L. L.; Wang, J. Y.; Lan, T.; Qian, J.; Li, Y.; Shi, Y.; Chai, Y.; Lan, W. et al. Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Sci. Adv.2017, 3, e1701186.

    Article  CAS  Google Scholar 

  11. [11]

    Liu, J.; Jiang, L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Monolayer organic field-effect transistors. Sci. China Chem.2019, 62, 313–330.

    Article  CAS  Google Scholar 

  12. [12]

    Deng, W.; Lu, B.; Mao, J.; Lu, Z. J.; Zhang, X. J.; Jie, J. S. Precise positioning of organic semiconductor single crystals with two-component aligned structure through 3D wettability-induced sequential assembly. ACS Appl. Mater. Interfaces2019, 11, 36205–36212.

    Article  CAS  Google Scholar 

  13. [13]

    Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater.2011, 23, 2059–2063.

    Article  CAS  Google Scholar 

  14. [14]

    Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. X. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun.2018, 9, 2933.

    Article  CAS  Google Scholar 

  15. [15]

    Deng, W.; Zhang, X. J.; Dong, H. L.; Jie, J. S.; Xu, X. Z.; Liu, J.; He, L.; Xu, L.; Hu, W. P.; Zhang, X. H. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Mater. Today2019, 24, 17–25.

    Article  CAS  Google Scholar 

  16. [16]

    Li, L. Q.; Gao, P.; Wang, W. C.; Müllen, K.; Fuchs, H.; Chi, L. F. Growth of ultrathin organic semiconductor microstripes with thickness control in the monolayer precision. Angew. Chem., Int. Ed.2013, 52, 12530–12535.

    Article  CAS  Google Scholar 

  17. [17]

    Deng, W.; Zhang, X. J.; Wang, L.; Wang, J. C.; Shang, Q. X.; Zhang, X. H.; Huang, L. M.; Jie, J. S. Wafer-scale precise patterning of organic single-crystal nanowire arrays via a photolithography-assisted spin-coating method. Adv. Mater.2015, 27, 7305–7312.

    Article  CAS  Google Scholar 

  18. [18]

    Diao, Y.; Tee, B. C. K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C. B. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater.2013, 12, 665–671.

    Article  CAS  Google Scholar 

  19. [19]

    Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S. T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater.2016, 28, 2201–2208.

    Article  CAS  Google Scholar 

  20. [20]

    Deng, W.; Jie, J. S.; Xu, X. Z.; Xiao, Y. L.; Lu, B.; Zhang, X. J.; Zhang, X. H. A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater.2020, 32, 1908340.

    Article  CAS  Google Scholar 

  21. [21]

    Wang, Q. Q.; Yang, F. X.; Zhang, Y.; Chen, M. X.; Zhang, X. T.; Lei, S. B.; Li, R. J.; Hu, W. P. Space-confined strategy toward large-area two-dimensional single crystals of molecular materials. J. Am. Chem. Soc.2018, 140, 5339–5342.

    Article  CAS  Google Scholar 

  22. [22]

    Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by “Solution Epitaxy”. Angew. Chem, Int. Ed.2016, 55, 9519–9523.

    Article  CAS  Google Scholar 

  23. [23]

    Wang, Q. J.; Qian, J.; Li, Y.; Zheng, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater.2016, 26, 3191–3198.

    Article  CAS  Google Scholar 

  24. [24]

    Zhang, Y. J.; Guo, Y.; Song, L.; Qian, J.; Jiang, S.; Wang, Q. J.; Wang, X. R.; Shi, Y.; Wang, X. M.; Li, Y. Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors. J. Mater. Chem. C2017, 5, 11246–11251.

    Article  CAS  Google Scholar 

  25. [25]

    Lee, J. H.; Choi, H. H.; Park, Y. D.; Anthony, J. E.; Lim, J. A.; Cho, J.; Chung, D. S.; Hwang, J.; Jang, H. W.; Cho, K. et al. 1D versus 2D growth of soluble acene crystals from soluble acene/polymer blends governed by a residual solvent reservoir in a phase-separated polymer matrix. Adv. Funct. Mater.2018, 28, 1802875.

    Article  CAS  Google Scholar 

  26. [26]

    Haase, K.; Teixeira da Rocha, C.; Hauenstein, C.; Zheng, Y. C.; Hambsch, M.; Mannsfeld, S. C. B. High-mobility, solution-processed organic field-effect transistors from C8-BTBT: Polystyrene blends. Adv. Electron. Mater.2018, 4, 1800076.

    Article  CAS  Google Scholar 

  27. [27]

    Teixeira da Rocha, C.; Haase, K.; Zheng, Y. C.; Löffler, M.; Hambsch, M.; Mannsfeld, S. C. B. Solution coating of small molecule/polymer blends enabling ultralow voltage and high-mobility organic transistors. Adv. Electron. Mater.2018, 4, 1800141.

    Article  CAS  Google Scholar 

  28. [28]

    Jo, P. S.; Duong, D. T.; Park, J.; Sinclair, R.; Salleo, A. Control of rubrene polymorphs via polymer binders: Applications in organic field-effect transistors. Chem. Mater.2015, 27, 3979–3987.

    Article  CAS  Google Scholar 

  29. [29]

    Naden, A. B.; Loos, J.; MacLaren, D. A. Structure-function relations in diF-TES-ADT blend organic field effect transistors studied by scanning probe microscopy. J. Mater. Chem. C2014, 2, 245–255.

    Article  CAS  Google Scholar 

  30. [30]

    Peng, B. Y.; Wang, Z. R.; Chan, P. K. L. A simulation-assisted solution-processing method for a large-area, high-performance C10-DNTT organic semiconductor crystal. J. Mater. Chem. C2016, 4, 8628–8633.

    Article  CAS  Google Scholar 

  31. [31]

    Diao, Y.; Zhou, Y.; Kurosawa, T.; Shaw, L.; Wang, C.; Park, S.; Guo, Y. K.; Reinspach, J. A.; Gu, K.; Gu, X. D. et al. Flow-enhanced solution printing of all-polymer solar cells. Nat. Commun.2015, 6, 7955.

    Article  CAS  Google Scholar 

  32. [32]

    Vladimirov, I.; Kellermeier, M.; Geßner, T.; Molla, Z.; Grigorian, S.; Pietsch, U.; Schaffroth, L. S.; Kühn, M.; May, F.; Weitz, R. T. High-mobility, ultrathin organic semiconducting films realized by surface-mediated crystallization. Nano Lett.2018, 18, 9–14.

    Article  CAS  Google Scholar 

  33. [33]

    Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. Highly soluble [1]Benzothieno[3, 2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc.2007, 129, 15732–15733.

    Article  CAS  Google Scholar 

  34. [34]

    Izawa, T.; Miyazaki, E.; Takimiya, K. Molecular ordering of high-performance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics. Adv. Mater.2008, 20, 3388–3392.

    Article  CAS  Google Scholar 

  35. [35]

    Pei, K.; Chen, M.; Zhou, Z. W.; Li, H. Y.; Chan, P. K. L. Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents. ACS Appl. Electron. Mater.2019, 1, 379–388.

    Article  CAS  Google Scholar 

  36. [36]

    Liu, C.; Minari, T.; Li, Y.; Kumatani, A.; Lee, M. V.; Athena Pan, S. H.; Takimiya, K.; Tsukagoshi, K. Direct formation of organic semiconducting single crystals by solvent vapor annealing on a polymer base film. J. Mater. Chem.2012, 22, 8462–8469.

    Article  CAS  Google Scholar 

  37. [37]

    Yoon, J. Y.; Jeong, S.; Lee, S. S.; Kim, Y. H.; Ka, J. W.; Yi, M. H.; Jang, K. S. Enhanced performance of solution-processed organic thin-film transistors with a low-temperature-annealed alumina interlayer between the polyimide gate insulator and the semiconductor. ACS Appl. Mater. Interfaces2013, 5, 5149–5155.

    Article  CAS  Google Scholar 

  38. [38]

    Kim, A.; Jang, K. S.; Kim, J.; Won, J. C.; Yi, M. H.; Kim, H.; Yoon, D. K.; Shin, T. J.; Lee, M. H.; Ka, J. W. et al. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors. Adv. Mater.2013, 25, 6219–6625.

    Article  CAS  Google Scholar 

  39. [39]

    Jang, K. S.; Kim, W. S.; Won, J. M.; Kim, Y. H.; Myung, S.; Ka, J. W.; Kim, J.; Ahn, T.; Yi, M. H. Surface modification of polyimide gate insulators for solution-processed 2, 7-didecyl[1]benzothieno[3, 2-b][1]benzothiophene (C10-BTBT) thin-film transistors. Phys. Chem. Chem. Phys.2013, 15, 950–956.

    Article  CAS  Google Scholar 

  40. [40]

    Zhang, Z. C.; Peng, B. Y.; Ji, X. D.; Pei, K.; Chan, P. K. L. Marangoni-effect-assisted bar-coating method for high-quality organic crystals with compressive and tensile strains. Adv. Funct. Mater.2017, 27, 1703443.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Wei Wang and Bei Lu contributed equally to this work. This work was supported by the National Natural Science Foundation of China (Nos. 51973147, 61904117, 51821002 and 51672180), the Natural Science Foundation of Jiangsu Province of China (No. BK20180845), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices. The authors thank the Collaborative Innovation Center of Suzhou Nano Science and Technology (Nano-CIC), Soochow University and Beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiujuan Zhang or Jiansheng Jie.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, B., Deng, W. et al. Controlled 2D growth of organic semiconductor crystals by suppressing “coffee-ring” effect. Nano Res. 13, 2478–2484 (2020). https://doi.org/10.1007/s12274-020-2882-x

Download citation

Keywords

  • 2D organic semiconductor single crystals
  • 2D growth mode
  • coffee-ring effect
  • organic field-effect transistors