Skip to main content

Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting

Abstract

Solar energy is an inexhaustible renewable energy source. Among the various methods for solar energy conversion, photocatalytic hydrogen (H2) production is considered as one of the most promising ways. Since Fujishima pioneered this field in 1972, photocatalytic water splitting to produce H2 has received widespread attention. Up to now, abundant semiconductor materials have been explored as photocatalysts for pure water splitting to produce H2. However, photocatalytic seawater splitting is more in line with the concept of sustainable development, which can greatly alleviate the problem of limited freshwater resource. At present, only few studies have focused on the process of H2 production by photocatalytic seawater splitting due to the complex composition of seawater and lack of suitable photocatalysts. In this review, we outline the most recent advances in photocatalytic seawater splitting. In particular, we introduce the H2 production photocatalysts, underlying mechanism of ions in seawater on photocatalytic seawater splitting, current challenges and future potential advances for this exciting field.

This is a preview of subscription content, access via your institution.

References

  1. Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev.2015, 43, 599–610.

    CAS  Google Scholar 

  2. Dubey, P. K.; Tripathi, P.; Tiwari, R. S.; Sinha, A. S. K.; Srivastava, O. N. Synthesis of reduced graphene oxide-TiO2 nanoparticle composite systems and its application in hydrogen production. Int. J. Hydrogen Energy2014, 39, 16282–16292.

    CAS  Google Scholar 

  3. Moriya, Y.; Takata, T.; Domen, K. Recent progress in the development of (oxy) nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev.2013, 257, 1957–1969.

    CAS  Google Scholar 

  4. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev.2013, 42, 2294–2320.

    CAS  Google Scholar 

  5. Xing, J.; Fang, W. Q.; Zhao, H. J.; Yang, H. G. Inorganic photocatalysts for overall water splitting. Chem. —Asian J.2012, 7, 642–657.

    CAS  Google Scholar 

  6. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev.2010, 110, 6503–6570.

    CAS  Google Scholar 

  7. Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett.2010, 7, 2655–2661.

    Google Scholar 

  8. Maeda, K.; Domen, K. New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C2007, 111, 7851–7861.

    CAS  Google Scholar 

  9. Lewis, N. S. Toward cost-effective solar energy use. Science2007, 315, 798–801.

    CAS  Google Scholar 

  10. Cai, J. S.; Shen, J. L.; Zhang, X. N.; Ng, Y. H.; Hang, J. Y.; Guo, W. X.; Lin, C. J.; Lai, Y. K. Light-driven sustainable hydrogen production utilizing TiO2 nanostructures: A review. Small Methods2019, 3, 1800184.

    Google Scholar 

  11. Fang, S. Y.; Hu, Y. H. Recent progress in photocatalysts for overall water splitting. Int. J. Energy Res.2019, 43, 1082–1098.

    Google Scholar 

  12. Chen, S. S; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater.2017, 2, 17050.

    CAS  Google Scholar 

  13. Muradov, N. Z.; Veziroğlu, T. N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy2008, 33, 6804–6839.

    CAS  Google Scholar 

  14. Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci.2013, 6, 1983–2002.

    CAS  Google Scholar 

  15. Xu, P. T.; Mccool, N. S.; Mallouk, T. E. Water splitting dyesensitized solar cells. Nano Today2017, 14, 42–58.

    CAS  Google Scholar 

  16. Zhang, W.; Qi, J.; Liu, K. Q.; Cao, R. A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation. Adv. Energy Mater.2016, 6, 1502489.

    Google Scholar 

  17. Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol., C: Photochem. Rev.2011, 12, 237–268.

    CAS  Google Scholar 

  18. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev.2010, 110, 6446–6473.

    CAS  Google Scholar 

  19. Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science2014, 345, 1593–1596.

    CAS  Google Scholar 

  20. Liu, X. L.; Ma, R.; Wang, X. X.; Ma, Y.; Yang, Y. P.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J. R.; Wang, X. K. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut.2019, 252, 62–73.

    CAS  Google Scholar 

  21. Chini, C. M.; Schreiber, K. L.; Barker, Z. A.; Stillwell, A. S. Quantifying energy and water savings in the U.S. residential sector. Environ. Sci. Technol.2016, 50, 9003–9012.

    CAS  Google Scholar 

  22. Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; John, C. A.; Von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science2006, 313, 1072–1077.

    CAS  Google Scholar 

  23. Vörösmarty, C. J.; Green, P.; Salisbury, J.; Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science2000, 289, 284–288.

    Google Scholar 

  24. Fukuzumi, S.; Lee, Y. M.; Nam, W. Fuel production from seawater and fuel cells using seawater. ChemSusChem.2017, 10, 4264–4276.

    CAS  Google Scholar 

  25. Kumaravel, V.; Abdel-Wahab, A. A short review on hydrogen, biofuel, and electricity production using seawater as a medium. Energy Fuels2018, 32, 6423–6437.

    CAS  Google Scholar 

  26. Ichikawa, S. Photoelectrocatalytic production of hydrogen from natural seawater under sunlight. Int. J. Hydrogen Energy1997, 22, 675–678.

    CAS  Google Scholar 

  27. Ji, S. M.; Jun, H.; Jang, J. S.; Son, H. C.; Borse, P. H.; Lee, J. S. Photocatalytic hydrogen production from natural seawater. J. Photochem. Photobiol., A: Chem.2007, 189, 141–144.

    CAS  Google Scholar 

  28. Li, L. Y.; Zhou, Z. M.; Li, L. Y.; Zhuang, Z. Y.; Bi, J. H.; Chen, J. H.; Yu, Y.; Yu, J. H. Thioether-functionalized 2D covalent organic framework featuring specific affinity to Au for photocatalytic hydrogen production from seawater. ACS Sustainable Chem. Eng.2019, 7, 18574–18581.

    CAS  Google Scholar 

  29. Li, Y. X.; He, F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Photocatalytic H2 evolution from NaCl saltwater over ZnS1−x−0.5yOx(OH)y-ZnO under visible light irradiation. Int. J. Hydrogen Energy2011, 36, 10565–10573.

    CAS  Google Scholar 

  30. Li, Y. X.; Lin, S. Y.; Peng, S. Q.; Lu, G. X.; Li, S. B. Modification of ZnS1−x−0.5yOx(OH)y-ZnO photocatalyst with NiS for enhanced visible-light-driven hydrogen generation from seawater. Int. J. Hydrogen Energy2013, 38, 15976–15984.

    CAS  Google Scholar 

  31. Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J. Y.; Zou, Z. G. Photo-electrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci.2013, 6, 347–370.

    CAS  Google Scholar 

  32. Luo, W. J; Yang, Z. S.; Li, Z. S.; Zhang, J. Y.; Liu, J. G.; Zhao, Z. Y.; Wang, Z. Q.; Yan, S. C.; Yu, T.; Zou, Z. G. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci.2011, 4, 4046–4051.

    CAS  Google Scholar 

  33. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev.2014, 43, 7787–7812.

    CAS  Google Scholar 

  34. Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy2019, 44, 540–577.

    CAS  Google Scholar 

  35. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci.2015, 8, 731–759.

    CAS  Google Scholar 

  36. Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal.2019, 2, 387–399.

    CAS  Google Scholar 

  37. Miseki, Y.; Sayama, K. Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Adv. Energy Mater.2019, 9, 1801294.

    Google Scholar 

  38. Wang, Y. O.; Suzuki, H.; Xie, J. J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. W. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev.2018, 118, 5201–5241.

    CAS  Google Scholar 

  39. Guan, X. J.; Chowdhury, F. A.; Pant, N.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C2018, 122, 13797–13802.

    CAS  Google Scholar 

  40. Wu, M. C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, Á.; Kónya, Z.; Keiski, R. et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res.2011, 4, 360–369.

    CAS  Google Scholar 

  41. Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci.2015, 8, 2377–2382.

    CAS  Google Scholar 

  42. Peng, S. Q.; Liu, X. Y.; Ding, M.; Li Y. X. Preparation of CdS-Pt/TiO2 composite and the properties for splitting sea water into hydrogen under visible light irradiation. J. Mol. Catal.2013, 27, 459–466.

    CAS  Google Scholar 

  43. Gao, M. M.; Connor, P. K. N.; Ho, G. W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci.2016, 9, 3151–3160.

    CAS  Google Scholar 

  44. Simamora, A. J.; Hsiung, T. L.; Chang, F. C.; Yang, T. C.; Liao, C. Y.; Wang, H. P. Photocatalytic splitting of seawater and degradation of methylene blue on CuO/nano TiO2. Int. J. Hydrogen Energy2012, 37, 13855–13858.

    CAS  Google Scholar 

  45. Sinhamahapatra, A.; Lee, H. Y.; Shen, S. H.; Mao, S. S.; Yu, J. S. H-doped TiO2−x prepared with MgH2 for highly efficient solar-driven hydrogen production. Appl. Catal. B: Environ.2018, 237, 613–621.

    CAS  Google Scholar 

  46. Simamora, A. J.; Chang, F. C.; Wang, H. P.; Yang, T. C.; Wei, Y. L.; Lin, W. K. H2 fuels from photocatalytic splitting of seawater affected by nano-TiO2 promoted with CuO and NiO. Int. J. Photoenergy2013, 2013, 419182.

    Google Scholar 

  47. DeepanPrakash, D.; Premnath, V.; Raghu, C.; Vishnukumar, S.; Jayanthi, S. S.; Easwaramoorthy, D. Harnessing power from sea water using nano material as photocatalyst and solar energy as light source: The role of hydrocarbon as dual agent. Int. J. Energy Res.2014, 38, 249–253.

    CAS  Google Scholar 

  48. Song, T.; Zhang, P. Y.; Wang, T. T.; Ali, A.; Zeng, H. P. Constructing a novel strategy for controllable synthesis of corrosion resistant Ti3+ self-doped titanium-silicon materials with efficient hydrogen evolution activity from simulated seawater. Nanoscale2018, 10, 2275–2284.

    CAS  Google Scholar 

  49. Wang, C.; Abdul-Rahman, H.; Rao, S. P. A new design of luminescent solar concentrator and its trial run. Int. J. Energy Res.2010, 34, 1372–1385.

    Google Scholar 

  50. Cao, S.; Chan, T. S.; Lu, Y. R.; Shi, X. H.; Fu, B.; Wu, Z. J.; Li H. M.; Liu, K.; Alzuabi, S.; Cheng, P. et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy2020, 67, 104287.

    CAS  Google Scholar 

  51. Sakurai, H.; Kiuchi, M.; Jin, T. Pt/TiO2 granular photocatalysts for hydrogen production from aqueous glycerol solution: Durability against seawater constituents and dissolved oxygen. Catal. Commun.2018, 114, 124–128.

    CAS  Google Scholar 

  52. Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturin, M.; Pisanu, A.; Malavasi, L.; Profumo, A. Improved photocatalytic H2 production assisted by aqueous glucose biomass by oxidized g-C3N4. Int. J. Hydrogen Energy2018, 43, 14925–14933.

    CAS  Google Scholar 

  53. Yang, C. W.; Qin, J. Q.; Rajendran, S.; Zhang, X. Y.; Liu, R. P. WS2 and C-TiO2 nanorods acting as effective charge separators on g-C3N4 to boost visible-light activated hydrogen production from seawater. ChemSusChem2018, 11, 4077–4085.

    CAS  Google Scholar 

  54. Mishra, B.; Mishra, S.; Satpati B.; Chaudhary, Y. S. Engineering the surface of a polymeric photocatalyst for stable solar-to-chemical fuel conversion from seawater. ChemSusChem2019, 12, 3383–3389.

    CAS  Google Scholar 

  55. Abe, R.; Higashi, M.; Sayama, K.; Abe, Y.; Sugihara, H. Photocatalytic activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for water splitting into H2 and O2. J. Phys. Chem. B2006, 110, 2219–2226.

    CAS  Google Scholar 

  56. Yang, T. C.; Chang, F. C.; Wang, H. P.; Wei, Y. L.; Jou, C. J. Photocatalytic splitting of seawater effected by (Ni-ZnO)@Cnanoreactors. Mar. Pollut. Bull.2014, 85, 696–699.

    CAS  Google Scholar 

  57. Cui, G. W.; Wang, W.; Ma, M. Y.; Xie, J. F.; Shi, X. F.; Deng, N.; Xin, J. P.; Tang, B. IR-Driven photocatalytic water splitting with WO2NaxWO3 hybrid conductor material. Nano Lett.2015, 15, 7199–7203.

    CAS  Google Scholar 

  58. Qiu, B. C.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. A robust and efficient catalyst of CdxZn1−xSe motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation. Chem. Commun.2017, 53, 897–900.

    CAS  Google Scholar 

  59. Yang, X. Y.; Hu, Z. C.; Yin, Q. W.; Shu, C.; Jiang, X. F.; Zhang, J.; Wang, X. H.; Jiang, J. X.; Huang, F.; Cao, Y. Water-soluble conjugated molecule for solar-driven hydrogen evolution from salt water. Adv. Funct. Mater.2019, 29, 1808156.

    Google Scholar 

  60. Liu, Y. Y.; Liao, Z. J.; Ma, X. L.; Xiang, Z. H. Ultrastable and efficient visible-light-driven hydrogen production based on donor-acceptor copolymerized covalent organic polymer. ACS Appl. Mater. Interfaces2018, 10, 30698–30705.

    CAS  Google Scholar 

  61. Liu, Y. Y.; Xiang, Z. H. Fully conjugated covalent organic polymer with carbon-encapsulated Ni2P for highly sustained photocatalytic H2 production from seawater. ACS Appl. Mater. Interfaces2019, 11, 41313–41320.

    CAS  Google Scholar 

  62. Zhu, C.; Liu, C. A.; Fu, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B: Environ.2019, 242, 178–185.

    CAS  Google Scholar 

  63. Li, Y. X.; He, F.; Peng, S. Q.; Gao, D.; Lu, G. X.; Li, S. B. Effects of electrolyte NaCl on photocatalytic hydrogen evolution in the presence of electron donors over Pt/TiO2. J. Mol. Catal. A: Chem.2011, 341, 71–76.

    CAS  Google Scholar 

  64. Maeda, K.; Masuda, H.; Domen, K. Effect of electrolyte addition on activity of (Ga1−xZnx)(N1−xOx) photocatalyst for overall water splitting under visible light. Catal. Today2009, 147, 173–178.

    CAS  Google Scholar 

  65. Li, Y. X.; Gao, D.; Peng, S. Q.; Lu, G. X.; Li, S. B. Photocatalytic hydrogen evolution over Pt/Cd0.5Zn0.5S from saltwater using glucose as electron donor: An investigation of the influence of electrolyte NaCl. Int. J. Hydrogen Energy2011, 36, 4291–4297.

    CAS  Google Scholar 

  66. Li, Y. X.; Lu, G. X.; Li, S. B. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Appl. Catal. A: Gen. 2001, 214, 179–185.

    CAS  Google Scholar 

  67. Krivec, M.; Dillert, R.; Bahnemann, D. W.; Mehle, A.; Štrancar, J.; Dražić, G. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys.2014, 16, 14867–14873.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21703046 and 21972028), the Strategic Priority Research Program of Chinese Academy of Science (No. XDB36000000) and the Ministry of Science and Technology of China (No. 2016YFF0203803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Cao or Lingyu Piao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hu, W., Cao, S. et al. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 13, 2313–2322 (2020). https://doi.org/10.1007/s12274-020-2880-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2880-z

Keywords

  • photocatalytic
  • seawater
  • hydrogen production
  • photocatalytic mechanism