Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene

Abstract

The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H2O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu3(HHTN)2, which possesses pore aperture of 2.5 nm. Cu3(HHTN)2 MOF shows moderate electrical conductivity of 9.01 × 10−8 S·cm−1 at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I2, the conductivity of Cu3(HHTN)2 can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Hendon, C. H.; Tiana, D.; Walsh, A. Conductive metal-organic frameworks and networks: Fact or fantasy? Phys. Chem. Chem. Phys.2012, 14, 13120–13132.

    CAS  Google Scholar 

  2. [2]

    Givaja, G.; Amo-Ochoa, P.; Gómez-García, C. J.; Zamora, F. Electrical conductive coordination polymers. Chem. Soc. Rev.2012, 41, 115–147.

    CAS  Google Scholar 

  3. [3]

    Sun, L.; Campbell, M. G.; Dincă M. Electrically conductive porous metal-organic frameworks. Angew. Chem., Int. Ed.2016, 55, 3566–3579.

    CAS  Google Scholar 

  4. [4]

    Ko, M.; Mendecki, L.; Mirica, K. A. Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun.2018, 54, 7873–7891.

    CAS  Google Scholar 

  5. [5]

    Huang, X.; Sheng, P.; Tu, Z. Y.; Zhang, F. J.; Wang, J. H.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y. P.; Sun, Y. M. et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun.2015, 6, 7408.

    CAS  Google Scholar 

  6. [6]

    Dincă, M.; Léonard, F. Metal-organic frameworks for electronics and photonics. MRS Bull.2016, 41, 854–857.

    Google Scholar 

  7. [7]

    Wu, G. D.; Huang, J. H.; Zang, Y.; He, J.; Xu, G. Porous field-effect transistors based on a semiconductive metal-organic framework. J. Am. Chem. Soc.2017, 139, 1360–1363.

    CAS  Google Scholar 

  8. [8]

    Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc.2015, 137, 13780–13783.

    CAS  Google Scholar 

  9. [9]

    Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed.2015, 54, 4349–4352.

    CAS  Google Scholar 

  10. [10]

    Smith, M. K.; Jensen, K. E.; Pivak, P. A.; Mirica, K. A. Direct self-assembly of conductive nanorods of metal-organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater.2016, 28, 5264–5268.

    CAS  Google Scholar 

  11. [11]

    Smith, M. K.; Mirica, K. A. Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc.2017, 139, 16759–16767.

    CAS  Google Scholar 

  12. [12]

    Campbell, M. G.; Dincă, M. Metal-organic frameworks as active materials in electronic sensor devices. Sensors2017, 17, 1108.

    Google Scholar 

  13. [13]

    Yao, M. S.; Lv, X. J.; Fu, Z. H.; Li, W. H.; Deng, W. H.; Wu, G. D.; Xu, G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem., Int. Ed.2017, 129, 16737–16741.

    Google Scholar 

  14. [14]

    Mendecki, L.; Mirica, K. A. Conductive metal-organic frameworks as ion-to-electron transducers in potentiometric sensors. ACS Appl. Mater. Interfaces2018, 10, 19248–19257.

    CAS  Google Scholar 

  15. [15]

    Rubio-Gimenez, V.; Almora-Barrios, N.; Escorcia-Ariza, G.; Galbiati, M.; Sessolo, M.; Tatay, S.; Marti-Gastaldo, C. Origin of the chemiresistive response of ultrathin films of conductive metal-organic frameworks. Angew. Chem., Int. Ed.2018, 57, 15086–15090.

    CAS  Google Scholar 

  16. [16]

    Meng, Z.; Aykanat, A.; Mirica, K. A. Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc.2019, 141, 2046–2053.

    CAS  Google Scholar 

  17. [17]

    Aubrey, M. L.; Kapelewski, M. T.; Melville, J. F.; Oktawiec, J.; Presti, D.; Gagliardi, L.; Long, J. R. Chemiresistive detection of gaseous hydrocarbons and interrogation of charge transport in Cu[Ni(2,3-pyrazinedithiolate)2] by gas adsorption. J. Am. Chem. Soc.2019, 141, 5005–5013.

    CAS  Google Scholar 

  18. [18]

    Wang, Z. Y.; Liu, T.; Jiang, L. P.; Asif, M.; Qiu, X. Y.; Yu, Y.; Xiao, F.; Liu, H. F. Assembling metal-organic frameworks into the fractal scale for sweat sensing. ACS Appl. Mater. Interfaces2019, 11, 32310–32319.

    CAS  Google Scholar 

  19. [19]

    Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev.2019, 119, 478–598.

    CAS  Google Scholar 

  20. [20]

    Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R. Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal-organic framework. J. Am. Chem. Soc.2015, 137, 15703–15711.

    CAS  Google Scholar 

  21. [21]

    DeGayner, J. A.; Jeon, I. R.; Sun, L.; Dincă, M.; Harris, T. D. 2D conductive iron-quinoid magnets ordering up to Tc = 105 K via heterogenous redox chemistry. J. Am. Chem. Soc.2017, 139, 4175–4184.

    CAS  Google Scholar 

  22. [22]

    Li, W. B.; Sun, L.; Qi, J. S.; Jarillo-Herrero, P.; Dincă, M.; Li, J. High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks. Chem. Sci.2017, 8, 2859–2867.

    CAS  Google Scholar 

  23. [23]

    Dong, R. H.; Zhang, Z. T.; Tranca, D. C.; Zhou, S. Q.; Wang, M. C.; Adler, P.; Liao, Z. Q.; Liu, F.; Sun, Y.; Shi, W. J. et al. A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun.2018, 9, 2637.

    Google Scholar 

  24. [24]

    Yang, C. Q.; Dong, R. H.; Wang, M.; Petkov, P. S.; Zhang, Z. T.; Wang, M. C.; Han, P.; Ballabio, M.; Bräuninger, S. A.; Liao, Z. Q. et al. A semiconducting layered metal-organic framework magnet. Nat. Commun.2019, 10, 3260.

    Google Scholar 

  25. [25]

    Downes, C. A.; Marinescu, S. C. Efficient electrochemical and photoelectrochemical H2 production from water by a cobalt dithiolene one-dimensional metal-organic surface. J. Am. Chem. Soc.2015, 137, 13740–13743.

    CAS  Google Scholar 

  26. [26]

    Dong, R. H.; Pfeffermann, M.; Liang, H. W.; Zheng, Z. K.; Zhu, X.; Zhang, J.; Feng, X. L. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed.2015, 54, 12058–12063.

    CAS  Google Scholar 

  27. [27]

    Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun.2016, 7, 10942.

    CAS  Google Scholar 

  28. [28]

    Jia, H. X.; Yao, Y. C.; Zhao, J. T.; Gao, Y. Y.; Luo, Z. L.; Du, P. W. A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis. J. Mater. Chem. A2018, 6, 1188–1195.

    CAS  Google Scholar 

  29. [29]

    Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed.2019, 58, 10677–10682.

    CAS  Google Scholar 

  30. [30]

    Hu, L.; Xiong, T. Z.; Liu, R.; Hu, Y. W.; Mao, Y. C.; Balogun, M. J. T.; Tong, Y. X. Co3O4@Cu-based conductive metal-organic framework core-shell nanowire electrocatalysts enable efficient low-overall-potential water splitting. Chem.—Eur. J.2019, 25, 6575–6583.

    CAS  Google Scholar 

  31. [31]

    Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater.2017, 16, 220–224.

    CAS  Google Scholar 

  32. [32]

    Zhang, Z. Y.; Awaga, K. Redox-active metal-organic frameworks as electrode materials for batteries. MRS Bull.2016, 41, 883–889.

    CAS  Google Scholar 

  33. [33]

    Park, J.; Lee, M.; Feng, D. W.; Huang, Z. H.; Hinckley, A. C.; Yakovenko, A.; Zou, X. D.; Cui, Y.; Bao, Z. Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc.2018, 140, 10315–10323.

    CAS  Google Scholar 

  34. [34]

    Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy2018, 3, 30–36.

    CAS  Google Scholar 

  35. [35]

    Zhou, S. Y.; Kong, X. Y.; Zheng, B.; Huo, F. W.; Strømme, M.; Xu, C. Cellulose nanofiber@conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano2019, 13, 9578–9586.

    CAS  Google Scholar 

  36. [36]

    Zhang, X. H.; Dong, P. P.; Song, M. K. Metal-organic frameworks for high-energy lithium batteries with enhanced safety: Recent progress and future perspectives. Batteries Supercaps2019, 2, 591–626.

    CAS  Google Scholar 

  37. [37]

    Nam, K. W.; Park, S. S.; Dos Reis, R.; Dravid, V. P.; Kim, H.; Mirkin, C. A.; Stoddart, J. F. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun.2019, 10, 4948.

    Google Scholar 

  38. [38]

    Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. et al. New porous crystals of extended metal-catecholates. Chem. Mater.2012, 24, 3511–3513.

    CAS  Google Scholar 

  39. [39]

    Leong, C. F.; Usov, P. M.; D’Alessandro, D. M. Intrinsically conducting metal-organic frameworks. MRS Bull.2016, 41, 858–864.

    Google Scholar 

  40. [40]

    Nagatomi, H.; Yanai, N.; Yamada, T.; Shiraishi, K.; Kimizuka, N. Synthesis and electric properties of a two-dimensional metal-organic framework based on phthalocyanine. Chem.—Eur. J.2018, 24, 1806–1810.

    CAS  Google Scholar 

  41. [41]

    Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M. et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc.2013, 135, 2462–2465.

    CAS  Google Scholar 

  42. [42]

    Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J. Am. Chem. Soc.2015, 137, 118–121.

    CAS  Google Scholar 

  43. [43]

    Dou, J. H.; Sun, L.; Ge, Y. C.; Li, W. B.; Hendon, C. H.; Li, J.; Gul, S.; Yano, J.; Stach, E. A.; Dincă, M. Signature of metallic behavior in the metal-organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc.2017, 139, 13608–13611.

    CAS  Google Scholar 

  44. [44]

    Park, J.; Hinckley, A. C.; Huang, Z. H.; Feng, D. W.; Yakovenko, A. A.; Lee, M.; Chen, S. C.; Zou, X. D.; Bao, Z. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal-organic framework. J. Am. Chem. Soc.2018, 140, 14533–14537.

    CAS  Google Scholar 

  45. [45]

    Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc.2014, 136, 8859–8862.

    CAS  Google Scholar 

  46. [46]

    Clough, A. J.; Skelton, J. M.; Downes, C. A.; de la Rosa, A. A.; Yoo, J. W.; Walsh, A.; Melot, B. C.; Marinescu, S. C. Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework. J. Am. Chem. Soc.2017, 139, 10863–10867.

    CAS  Google Scholar 

  47. [47]

    Rubio-Giménez, V.; Galbiati, M.; Castells-Gil, J.; Almora-Barrios, N.; Navarro-Sánchez, J.; Escorcia-Ariza, G.; Mattera, M.; Arnold, T.; Rawle, J.; Tatay, S. et al. Bottom-up fabrication of semiconductive metal-organic framework ultrathin films. Adv. Mater.2018, 30, 1704291.

    Google Scholar 

  48. [48]

    Cui, Y. T.; Yan, J.; Chen, Z. J.; Zhang, J. J.; Zou, Y.; Sun, Y. M.; Xu, W.; Zhu, D. B. [Cu3(C6Se6)]n: The first highly conductive 2D π-d conjugated coordination polymer based on benzenehexaselenolate. Adv. Sci.2019, 6, 1802235.

    Google Scholar 

  49. [49]

    Cui, Y. T.; Yan, J.; Chen, Z. J.; Xing, W. L.; Ye, C. H.; Li, X.; Zou, Y.; Sun, Y. M.; Liu, C. M.; Xu, W. et al. Synthetic route to a triphenylenehexaselenol-based metal organic framework with semi-conductive and glassy magnetic properties. iScience2020, 23, 100812.

    CAS  Google Scholar 

  50. [50]

    Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science2002, 295, 469–472.

    CAS  Google Scholar 

  51. [51]

    Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science2010, 329, 424–428.

    CAS  Google Scholar 

  52. [52]

    Furukawa, H.; Go, Y. B.; Ko, N.; Park, Y. K.; Uribe-Romo, F. J.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg. Chem.2011, 50, 9147–9152.

    CAS  Google Scholar 

  53. [53]

    Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gandara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science2012, 336, 1018–1023.

    CAS  Google Scholar 

  54. [54]

    Walsh, A.; Butler, K. T.; Hendon, C. H. Chemical principles for electroactive metal-organic frameworks. MRS Bull.2016, 41, 870–876.

    Google Scholar 

  55. [55]

    Rüdiger, E. C.; Rominger, F.; Steuer, L.; Bunz, U. H. Synthesis of substituted trinaphthylenes. J. Org. Chem.2016, 81, 193–196.

    Google Scholar 

  56. [56]

    Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y. B.; Xu, G. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater.2017, 27, 1702067.

    Google Scholar 

  57. [57]

    Chen, S.; Dai, J.; Zeng, X. C. Metal-organic kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): From semiconducting to metallic by metal substitution. Phys. Chem. Chem. Phys.2015, 17, 5954–5958.

    CAS  Google Scholar 

  58. [58]

    Ko, M.; Aykanat, A.; Smith, M. K.; Mirica, K. A. Drawing sensors with ball-milled blends of metal-organic frameworks and graphite. Sensors2017, 17, 2192.

    Google Scholar 

  59. [59]

    Fan, H. Y. Temperature dependence of the energy gap in semiconductors. Phys. Rev.1951, 82, 900–905.

    CAS  Google Scholar 

  60. [60]

    Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica1967, 34, 149–154.

    CAS  Google Scholar 

  61. [61]

    Bludau, W.; Onton, A.; Heinke, W. Temperature dependence of the band gap of silicon. J. Appl. Phys.1974, 45, 1846–1848.

    CAS  Google Scholar 

  62. [62]

    Ünlü, H. A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors. Solid State Electron.1992, 35, 1343–1352.

    Google Scholar 

  63. [63]

    Geng, P. J.; Li, W. G.; Zhang, X. H.; Zhang, X. Y.; Deng, Y.; Kou, H. B. A novel theoretical model for the temperature dependence of band gap energy in semiconductors. J. Phys. D: Appl. Phys.2017, 50, 40LT02.

    Google Scholar 

  64. [64]

    Birkett, M.; Linhart, W. M.; Stoner, J.; Phillips, L. J.; Durose, K.; Alaria, J.; Major, J. D.; Kudrawiec, R.; Veal, T. D. Band gap temperature-dependence of close-space sublimation grown Sb2Se3 by photo-reflectance. APL Mater.2018, 6, 084901.

    Google Scholar 

  65. [65]

    Chirvase, D.; Chiguvare, Z.; Knipper, M.; Parisi, J.; Dyakonov, V.; Hummelen, J. C. Temperature dependent characteristics of poly(3-hexylthiophene)-fullerene based heterojunction organic solar cells. J. Appl. Phys.2003, 93, 3376–3383.

    CAS  Google Scholar 

  66. [66]

    Mirsakiyeva, A.; Hugosson, H. W.; Linares, M.; Delin, A. Temperature dependence of band gaps and conformational disorder in PEDOT and its selenium and tellurium derivatives: Density functional calculations. J. Chem. Phys.2017, 147, 134906.

    Google Scholar 

  67. [67]

    Wang, S.; Ma, J. Q.; Li, W. C.; Wang, J.; Wang, H. Z.; Shen, H. Z.; Li, J. Z.; Wang, J. Q.; Luo, H. M.; Li, D. H. Temperature-dependent band gap in two-dimensional perovskites: Thermal expansion interaction and electron-phonon interaction. J. Phys. Chem. Lett.2019, 10, 2546–2553.

    CAS  Google Scholar 

  68. [68]

    Tyagi, P.; Vedeshwar, A. G. Grain size dependent optical band gap of CdI2 films. Bull. Mater. Sci.2001, 24, 297–300.

    CAS  Google Scholar 

  69. [69]

    Pejova, B.; Grozdanov, I.; Tanuševski, A. Optical and thermal band gap energy of chemically deposited bismuth(III) selenide thin films. Mater. Chem. Phys.2004, 83, 245–249.

    CAS  Google Scholar 

  70. [70]

    Tiana, D.; Hendon, C. H.; Walsh, A.; Vaid, T. P. Computational screening of structural and compositional factors for electrically conductive coordination polymers. Phys. Chem. Chem. Phys.2014, 16, 14463–14472.

    CAS  Google Scholar 

  71. [71]

    Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z. F.; Hirahara, T.; Ishizaka, K. et al. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: A potential organic two-dimensional topological insulator. J. Am. Chem. Soc.2014, 136, 14357–14360.

    CAS  Google Scholar 

  72. [72]

    Jiang, Y.; Oh, I.; Joo, S. H.; Buyukcakir, O.; Chen, X.; Lee, S. H.; Huang, M.; Seong, W. K.; Kwak, S. K.; Yoo, J. W. et al. Partial oxidation-induced electrical conductivity and paramagnetism in a Ni(II) tetraaza[14]annulene-linked metal organic framework. J. Am. Chem. Soc.2019, 141, 16884–16893.

    CAS  Google Scholar 

  73. [73]

    Aubrey, M. L.; Wiers, B. M.; Andrews, S. C.; Sakurai, T.; Reyes-Lillo, S. E.; Hamed, S. M.; Yu, C. J.; Darago, L. E.; Mason, J. A.; Baeg, J. O. et al. Electron delocalization and charge mobility as a function of reduction in a metal-organic framework. Nat. Mater.2018, 17, 625–632.

    CAS  Google Scholar 

  74. [74]

    Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M. Y.; Wu, T. Z.; Wang, J. S.; Wang, R. X.; Feng, J. M.; Chen, T. Y. et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater.2020, 19, 552–558.

    CAS  Google Scholar 

  75. [75]

    Zhang, Y. G.; Riduan, S. N.; Wang, J. Q. Redox active metal- and covalent organic frameworks for energy storage: Balancing porosity and electrical conductivity. Chem.—Eur. J.2017, 23, 16419–16431.

    CAS  Google Scholar 

  76. [76]

    Li, P. F.; Wang, B. Recent development and application of conductive MOFs. Isr. J. Chem.2018, 58, 1010–1018.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from startup funds provided by Dartmouth College, from the Walter and Constance Burke Research Initiation Award, Irving Institute for Energy and Society, Army Research Office Young Investigator Program Grant No. W911NF-17-1-0398, Sloan Research Fellowship (No. FG-2018-10561), 3M Non-Tenured Faculty Award, and US Army Cold Regions Research & Engineering Lab (No. W913E519C0008), National Science Foundation EPSCoR award (No. #1757371). The authors thank the University Instrumentation Center at the University of New Hampshire (Durham, NH, USA) for the access to XPS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Mirica.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Mirica, K.A. Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene. Nano Res. 14, 369–375 (2021). https://doi.org/10.1007/s12274-020-2874-x

Download citation

Keywords

  • two-dimensional
  • metal-organic framework (MOF)
  • trinaphthylene
  • conductive MOF