Solid-state phase transformations toward a metal-organic framework of 7-connected Zn4O secondary building units

Abstract

In the development of metal-organic frameworks (MOFs), secondary building units (SBUs) have been utilized as molecular modules for the construction of nanoporous materials with robust structures. Under solvothermal synthetic conditions, dynamic changes in the metal coordination environments and ligand coordination modes of SBUs determine the resultant product structures. Alternatively, MOF phases with new topologies can also be achieved by post-synthetic treatment of as-synthesized MOFs via the introduction of acidic or basic moieties that cause the simultaneous cleavage/reformation of coordination bonds in the solid state. In this sense, we studied the solid-state transformation of two ndc-based Zn-MOFs (ndc = 1,4-naphthalene dicarboxylate) with different SBUs but the same pcu topology to another MOF with sev topology. One of the chosen MOFs with pcu nets is [Zn2(ndc)2(bpy)]n (bpy = 4,4′-bipyridine), (6Cbpy-MOF) consisting of a 6-connected pillared-paddlewheel SBU, and the other is IRMOF-7 composed of 6-connected Zn4O(COO)6 SBUs and ndc. Upon post-structural modification, these pcu MOFs were converted into the same MOF with sev topology constructed from the uncommon 7-connected Zn4O(COO)7 SBU (7C-MOF). The appropriate post-synthetic conditions for the transformation of each SBUs were systematically examined. In addition, the effect of the pillar molecules in the pillared-paddlewheel MOFs on the topology conversion was studied in terms of the linker basicity, which determines the inertness during the solid-state phase transformation. This post-synthetic modification approach is expected to expand the available methods for designing and synthesizing MOFs with controlled topologies.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH: Weinheim, 2019.

    Google Scholar 

  2. [2]

    Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv.2018, 4, eaat9180.

    CAS  Article  Google Scholar 

  3. [3]

    Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev.2009, 38, 1257–1283.

    CAS  Article  Google Scholar 

  4. [4]

    Ha, J. S.; Lee, J. H.; Moon, H. R. Alterations to secondary building units of metal-organic frameworks for the development of new functions. Inorg. Chem. Front.2020, 7, 12–27.

    CAS  Article  Google Scholar 

  5. [5]

    Lee, J. H.; Jeoung, S.; Chung, Y. G.; Moon, H. R. Elucidation of flexible metal-organic frameworks: Research progresses and recent developments. Coord. Chem. Rev.2019, 389, 161–188.

    CAS  Article  Google Scholar 

  6. [6]

    Dighe, A. V.; Nemade, R. Y.; Singh, M. R. Modeling and simulation of crystallization of metal-organic frameworks. Processes2019, 7, 527.

    CAS  Article  Google Scholar 

  7. [7]

    Aggarwal, H.; Bhatt, P. M.; Bezuidenhout, C. X.; Barbour, L. J. Direct evidence for single-crystal to single-crystal switching of degree of interpenetration in a metal-organic framework. J. Am. Chem. Soc.2014, 136, 3776–3779.

    CAS  Article  Google Scholar 

  8. [8]

    Wei, R. J.; Huo, Q.; Tao, J.; Huang, R. B.; Zheng, L. S. Spin-crossover FeII4 squares: Two-step complete spin transition and reversible single-crystal-to-single-crystal transformation. Angew. Chem., Int. Ed.2011, 50, 8940–8943.

    CAS  Article  Google Scholar 

  9. [9]

    Wang, X. P.; Chen, W. M.; Qi, H.; Li, X. Y.; Rajnák, C.; Feng, Z. Y.; Kurmoo, M.; Boča, R.; Jia, C. J.; Tung, C. H. et al. Solvent-controlled phase transition of a CoII-organic framework: From achiral to chiral and two to three dimensions. Chem.—Eur. J.2017, 23, 7990–7996.

    CAS  Article  Google Scholar 

  10. [10]

    Yan, Z. H.; Li, X. Y.; Liu, L. W.; Yu, S. Q.; Wang, X. P.; Sun, D. Single-crystal to single-crystal phase transition and segmented thermochromic luminescence in a dynamic 3D interpenetrated AgI coordination network. Inorg. Chem.2016, 55, 1096–1101.

    CAS  Article  Google Scholar 

  11. [11]

    Chaemchuen, S.; Zhou, K.; Yusubov, M. S.; Postnikov, P. S.; Klomkliang, N.; Verpoort, F. Solid-state transformation in porous metal-organic frameworks based on polymorphic-pillared net structure: Generation of tubular shaped MOFs. Micro. Meso. Mater.2019, 278, 99–104.

    CAS  Article  Google Scholar 

  12. [12]

    Schweighauser, L.; Harano, K.; Nakamura, E. Experimental study on interconversion between cubic MOF-5 and square MOF-2 arrays. Inorg. Chem. Commun.2017, 84, 1–4.

    CAS  Article  Google Scholar 

  13. [13]

    Xing, J. F.; Schweighauser, L.; Okada, S.; Harano, K.; Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun.2019, 10, 3068.

    Article  CAS  Google Scholar 

  14. [14]

    McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) crystals. Cryst. Growth Des.2013, 13, 5481–5486.

    CAS  Article  Google Scholar 

  15. [15]

    Kim, J.; Dolgos, M. R.; Lear, B. J. Isolation and chemical transformations involving a reactive intermediate of MOF-5. Cryst. Growth Des.2015, 15, 4781–4786.

    CAS  Article  Google Scholar 

  16. [16]

    Iannaccone, G.; Bernardi, A.; Suriano, R.; Bianchi, C. L.; Levi, M.; Turri, S.; Griffini, G. The role of sol-gel chemistry in the low-temperature formation of ZnO buffer layers for polymer solar cells with improved performance. RSC Adv.2016, 6, 46915–46924.

    CAS  Article  Google Scholar 

  17. [17]

    Yeh, C. C.; Liu, H. C.; Heni, W.; Berling, D.; Zan, H. W.; Soppera, O. Chemical and structural investigation of zinc-oxo cluster photoresists for DUV lithography. J. Mater. Chem. C2017, 5, 2611–2619.

    CAS  Article  Google Scholar 

  18. [18]

    Hirai, K.; Reboul, J.; Morone, N.; Heuser, J. E.; Furukawa, S.; Kitagawa, S. Diffusion-coupled molecular assembly: Structuring of coordination polymers across multiple length scales. J. Am. Chem. Soc.2014, 136, 14966–14973.

    CAS  Article  Google Scholar 

  19. [19]

    Lee, S. J.; Doussot, C.; Baux, A.; Liu, L. J.; Jameson, G. B.; Richardson, C.; Pak, J. J.; Trousselet, F.; Coudert, F. X.; Telfer, S. G. Multicomponent metal-organic frameworks as defect-tolerant materials. Chem. Mater.2016, 28, 368–375.

    CAS  Article  Google Scholar 

  20. [20]

    Beddoe, S. V.; Lonergan, R. F.; Pitak, M. B.; Price, J. R.; Coles, S. J.; Kitchen, J. A.; Keene, T. D. All about that base: Investigating the role of ligand basicity in pyridyl complexes derived from a copper-Schiff base coordination polymer. Dalton Trans.2019, 48, 15553–15559.

    CAS  Article  Google Scholar 

  21. [21]

    Karagiaridi, O.; Bury, W.; Tylianakis, E.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K. Opening metal-organic frameworks vol. 2: Inserting longer pillars into pillared-paddlewheel structures through solventassisted linker exchange. Chem. Mater.2013, 25, 3499–3503.

    CAS  Article  Google Scholar 

  22. [22]

    Burnett, B. J.; Choe, W. Stepwise pillar insertion into metal-organic frameworks: A sequential self-assembly approach. CrystEngComm2012, 14, 6129–6131.

    CAS  Article  Google Scholar 

  23. [23]

    Jeong, S.; Kim, D.; Song, X. K.; Choi, M.; Park, N.; Lah, M. S. Postsynthetic exchanges of the pillaring ligand in three-dimensional metal-organic frameworks. Chem. Mater.2013, 25, 1047–1054.

    CAS  Article  Google Scholar 

  24. [24]

    Misono, M. Heterogeneous Catalysis of Mixed Oxides: Perovskite and Heteropoly Catalysts; Elsevier: Oxford, 2013.

    Google Scholar 

  25. [25]

    Pan, Y.; Ding, Q. J.; Xu, H. J.; Shi, C. Y.; Singh, A.; Kumar, A.; Liu, J. Q. A new Zn(II)-based 3D metal-organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes. CrystEngComm2019, 21, 4578–4585.

    CAS  Article  Google Scholar 

  26. [26]

    Bai, S. Z.; Zhang, W. Q.; Ling, Y.; Yang, F. L.; Deng, M. L.; Chen, Z. X.; Weng, L. H.; Zhou, Y. M. Predicting and creating 7-connected Zn4O vertices for the construction of an exceptional metal-organic framework with nanoscale cages. CrystEngComm2015, 17, 1923–1926.

    CAS  Article  Google Scholar 

  27. [27]

    Duan, J. G.; Higuchi, M.; Kitagawa, S. Predesign and systematic synthesis of 11 highly porous coordination polymers with unprecedented topology. Inorg. Chem.2015, 54, 1645–1649.

    CAS  Article  Google Scholar 

  28. [28]

    Qiu, Y. C.; Yuan, S.; Li, X. X.; Du, D. Y.; Wang, C.; Qin, J. S.; Drake, H. F.; Lan, Y. Q.; Jiang, L.; Zhou, H. C. Face-sharing archimedean solids stacking for the construction of mixed-ligand metal-organic frameworks. J. Am. Chem. Soc.2019, 141, 13841–13848.

    CAS  Article  Google Scholar 

  29. [29]

    He, W. W.; Li, S. L.; Yang, G. S.; Lan, Y. Q.; Su, Z. M.; Fu, Q. Controllable synthesis of a non-interpenetrating microporous metal-organic framework based on octahedral cage-like building units for highly efficient reversible adsorption of iodine. Chem. Commun.2012, 48, 10001–10003.

    CAS  Article  Google Scholar 

  30. [30]

    Yu, D. B.; Shao, Q.; Song, Q. J.; Cui, J. W.; Zhang, Y. L.; Wu, B.; Ge, L.; Wang, Y.; Zhang, Y.; Qin, Y. Q. et al. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat. Commun.2020, 11, 927.

    CAS  Article  Google Scholar 

  31. [31]

    Swain, M. Chemicalize.org. J. Chem. Inf. Model.2012, 52, 613–615.

    CAS  Article  Google Scholar 

  32. [32]

    Chen, B. L.; Liang, C. D.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem., Int. Ed.2006, 45, 1390–1393.

    CAS  Article  Google Scholar 

  33. [33]

    Chun, H.; Dybtsev, D. N.; Kim, H.; Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials. Chem.—Eur. J.2005, 11, 3521–3529.

    CAS  Article  Google Scholar 

  34. [34]

    Shekhah, O.; Wang, H.; Paradinas, M.; Ocal, C.; Schüpbach, B.; Terfort, A.; Zacher, D.; Fischer, R. A.; Wöll, C. Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. Nat. Mater.2009, 8, 481–484.

    CAS  Article  Google Scholar 

  35. [35]

    Jiang, H. L.; Makal, T. A.; Zhou, H. C. Interpenetration control in metal-organic frameworks for functional applications. Coord. Chem. Rev.2013, 257, 2232–2249.

    CAS  Article  Google Scholar 

  36. [36]

    Ding, M. L.; Cai, X. C.; Jiang, H. L. Improving MOF stability: Approaches and applications. Chem. Sci.2019, 10, 10209–10230.

    CAS  Article  Google Scholar 

  37. [37]

    Kong, L. D.; Zou, R. Y.; Bi, W. Z.; Zhong, R. Q.; Mu, W. J.; Liu, J.; Han, R. P. S.; Zou, R. Q. Selective adsorption of CO2/CH4 and CO2/N2 within a charged metal-organic framework. J. Mater. Chem. A2014, 2, 17771–17778.

    CAS  Article  Google Scholar 

  38. [38]

    Shang, J.; Li, G.; Singh, R.; Gu, Q. F.; Nairn, K. M.; Bastow, T. J.; Medhekar, N.; Doherty, C. M.; Hill, A. J.; Liu, J. Z. et al. Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites. J. Am. Chem. Soc.2012, 134, 19246–19253.

    CAS  Article  Google Scholar 

  39. [39]

    Guha, S.; Saha, S. Fluoride ion sensing by an anion-π interaction. J. Am. Chem. Soc.2010, 132, 17674–17677.

    CAS  Article  Google Scholar 

  40. [40]

    Hosono, N.; Terashima, A.; Kusaka, S.; Matsuda, R.; Kitagawa, S. Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nat. Chem.2019, 11, 109–116.

    CAS  Article  Google Scholar 

  41. [41]

    Furukawa, S; Hirai, K.; Takashima, Y.; Nakagawa, K.; Kondo, M.; Tsuruoka, T.; Sakata, O.; Kitagawa, S. A block PCP crystal: Anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth. Chem. Commun.2009, 5097–5099.

    Google Scholar 

  42. [42]

    Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science2003, 300, 1127–1129.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (Nos. NRF-2016R1A5A1009405, NRF-2019M3E6A1103980, and NRF-2019R1A6A3A01096867).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jae Hwa Lee or Hoi Ri Moon.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Ha, J., Lee, J.H. et al. Solid-state phase transformations toward a metal-organic framework of 7-connected Zn4O secondary building units. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2873-y

Download citation

Keywords

  • metal-organic framework
  • secondary building units
  • solid-state transformation
  • linker basicity
  • ligand addition reaction