Skip to main content
Log in

Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, we exploit our prior successful synthesis of MOF-199 single crystals using the reaction-diffusion framework (RDF), to synthesize multivariate metal-organic frameworks (MTV-MOFs) version with enhanced properties. The MTV-MOFs are synthesized by creating defects within the MOF-199 crystal structure by integrating organic linkers entailing different functional groups. Accordingly, 5-aminoisophthalic acid (NH2-BDC) and 5-hydroxyisophthalic acid (OH-BDC) are separately mixed with 1,3,5-benzenetricarboxylic acid (BTC) in three different starting ratios of X-BDC:BTC (1:3, 1:1) and 3:1). The effects of this linker on the morphology of the synthesized MTV-MOFs, their thermal stability, and their surface area are investigated. The extent of the incorporation of the linkers in the framework is elucidated via 1H-NMR spectroscopy and it is shown that the incorporation varies as a function of the location along the tubular reactor, a characteristic of RDF. The enhanced properties of the synthesized MTV-MOFs are further demonstrated by measuring its adsorptive capability for methylene blue (MB) and rhodamine B (Rh B) in aqueous solution, and compared with that of the as-synthesized MOF-199. The kinetic and thermodynamic studies reveal that MTV-MOFs with the ratio of X-BDC:BTC (1:1) exhibit the best uptakes of MB (263 mg/g) for X = OH and Rh B (156 mg/g) for X = NH2. The adsorbents are also easily regenerated for three consecutive cycles without losing their efficiency. We finally demonstrate that MTV-MOFs can be designed to tune the dye removal selectivity and enhance the removal capacity of both MB and RhB in a binary aqueous solution of these dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev.2012, 112, 673–674.

    CAS  Google Scholar 

  2. McGuire, C. V.; Forgan, R. S. The surface chemistry of metal-organic frameworks. Chem. Commun.2015, 51, 5199–217.

    CAS  Google Scholar 

  3. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature2003, 423, 705–714.

    CAS  Google Scholar 

  4. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science2013, 341, 1230444.

    Google Scholar 

  5. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science2010, 329, 424–428.

    CAS  Google Scholar 

  6. Rojas, S.; Carmona, F. J.; Maldonado, C. R.; Horcajada, P.; Hidalgo, T.; Serre, C.; Navarro, J. A. R.; Barea, E. Nanoscaled zinc pyrazolate metal-organic frameworks as drug-delivery systems. Inorg. Chem.2016, 55, 2650–2663.

    CAS  Google Scholar 

  7. Zhao, D.; Cui, Y. J.; Yang, Y.; Qian, G. D. Sensing-functional luminescent metal-organic frameworks. CrystEngComm2016, 18, 3746–3759.

    CAS  Google Scholar 

  8. Yang, X. C.; Xu, Q. Bimetallic metal-organic frameworks for gas storage and separation. Ryst. Growth Des.2017, 17, 1450–1455.

    CAS  Google Scholar 

  9. Xiong, G.; Yu, B.; Dong, J.; Shi, Y.; Zhao, B.; He, L. N. Cluster-based MOFs with accelerated chemical conversion of CO2 through C-C bond formation. Chem. Commun.2017, 53, 6013–6016.

    CAS  Google Scholar 

  10. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks(MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev.2012, 112, 933–969.

    CAS  Google Scholar 

  11. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev.2012, 112, 1105–1125.

    CAS  Google Scholar 

  12. Belmabkhout, Y.; Guillerm, V.; Eddaoudi, M. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? Chem. Eng. J.2016, 296, 386–397.

    CAS  Google Scholar 

  13. Issa, R.; Hmadeh, M.; Al-Ghoul, M. Control of particle size and morphology of MOF-199 crystals via a reaction-diffusion framework. Defect Diffus. Forum2017, 380, 39–47.

    Google Scholar 

  14. Zhu, H. L.; Liu, D. X. The synthetic strategies of metal-organic framework membranes, films and 2D MOFs and their applications in devices. J. Mater. Chem. A2019, 7, 21004–21035.

    CAS  Google Scholar 

  15. Sun, D. R.; Sun, F. X.; Deng, X. Y.; Li, Z. H. Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg. Chem.2015, 54, 8639–8643.

    CAS  Google Scholar 

  16. Villajos, J. A.; Orcajo, G.; Martos, C.; Botas, J. Á.; Villacañas, J.; Calleja, G. Co/Ni mixed-metal sited MOF-74 material as hydrogen adsorbent. Int. J. Hydrogen Energy2015, 40, 5346–5352.

    CAS  Google Scholar 

  17. Naeem, A.; Ting, V. P.; Hintermair, U.; Tian, M.; Telford, R.; Halim, S.; Nowell, H.; Hołyńska, M.; Teat, S. J.; Scowen, I. J. et al. Mixed-linker approach in designing porous zirconium-based metal-organic frameworks with high hydrogen storage capacity. Chem. Commun.2016, 52, 7826–7829.

    CAS  Google Scholar 

  18. Haldar, R.; Maji, T. K. Metal-organic frameworks (MOFs) based on mixed linker systems: Structural diversities towards functional materials. CrystEngComm2013, 15, 9276–9295.

    CAS  Google Scholar 

  19. Deng, H. X.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organic frameworks. Science2010, 327, 846–850.

    CAS  Google Scholar 

  20. Kong, X. Q.; Deng, H. X.; Yan, F. Y.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Mapping of functional groups in metal-organic frameworks. Science2013, 341, 882–885.

    CAS  Google Scholar 

  21. Qin, J. S.; Yuan, S.; Wang, Q.; Alsalme, A.; Zhou, H. C. Mixed-linker strategy for the construction of multifunctional metal-organic frameworks. J. Mater. Chem. A2017, 5, 4280–4291.

    CAS  Google Scholar 

  22. Osborn Popp, T. M.; Yaghi, O. M. Sequence-dependent materials. Acc. Chem. Res.2017, 50, 532–534.

    CAS  Google Scholar 

  23. Lee, Y.; Kim, S.; Kang, J. K.; Cohen, S. M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun.2015, 51, 5735–5738.

    CAS  Google Scholar 

  24. Duan, C. Z.; Li, F. E.; Zhang, H.; Li, J. Q.; Wang, X. J.; Xi, H. X. Template synthesis of hierarchical porous metal-organic frameworks with tunable porosity. RSC Adv.2017, 7, 52245–52251.

    CAS  Google Scholar 

  25. Shi, Z. N.; Li, L.; Xiao, Y. X.; Wang, Y. X.; Sun, K. K.; Wang, H. X.; Liu, L. Synthesis of mixed-ligand Cu-MOFs and their adsorption of malachite green. RSC Adv.2017, 7, 30904–30910.

    CAS  Google Scholar 

  26. Peterson, G. W.; Au, K.; Tovar, T. M.; Epps, T. H. Multivariate CuBTC metal-organic framework with enhanced selectivity, stability, compatibility, and processability. Chem. Mater.2019, 31, 8459–8465.

    CAS  Google Scholar 

  27. Yuan, S.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Fang, Y.; Lollar, C.; Pang, J. D.; Zhang, L. L.; Sun, D. et al. Retrosynthesis of multi-component metal-organic frameworks. Nat. Commun.2018, 9, 808.

    Google Scholar 

  28. Furukawa H.; Müller, U.; Yaghi, O. M. “Heterogeneity within order” in metal-organic frameworks. Angew. Chem., Int. Ed.2015, 54, 3417–3430.

    CAS  Google Scholar 

  29. Burrows, A. D. Mixed-component metal-organic frameworks (MC-MOFs): Enhancing functionality through solid solution formation and surface modifications. CrystEngComm2011, 13, 3623–3642.

    CAS  Google Scholar 

  30. Wang, L. J.; Deng, H. X.; Furukawa, H.; Gándara, F.; Cordova, K. E.; Peri, D.; Yaghi, O. M. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem.2014, 53, 5881–5883.

    CAS  Google Scholar 

  31. Ayoub, G.; Karadeniz, B.; Howarth, A. J.; Farha, O. K.; Đilović, I.; Germann, L. S.; Dinnebier, R. E.; Užarević, K.; Friscic, T. Rational synthesis of mixed-metal microporous metal-organic frameworks with controlled composition using mechanochemistry. Chem. Mater.2019, 31, 5494–5501.

    CAS  Google Scholar 

  32. Karagiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Solvent-assisted linker exchange: An alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem., Int. Ed.2014, 53, 4530–4540.

    CAS  Google Scholar 

  33. Xi, W. Q.; Liu, Y.; Xia, Q. C.; Li, Z. J.; Cui, Y. Direct and post-synthesis incorporation of chiral metallosalen catalysts into metal-organic frameworks for asymmetric organic transformations. Chem.—Eur. J.2015, 21, 12581–12585.

    CAS  Google Scholar 

  34. Yuan, S.; Lu, W. G.; Chen, Y. P.; Zhang, Q.; Liu, T. F.; Feng, D. W.; Wang, X.; Qin, J. S.; Zhou, H. C. Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc.2015, 137, 3177–3180.

    CAS  Google Scholar 

  35. Chen, C. X.; Wei, Z. W.; Jiang, J. J.; Fan, Y. Z.; Zheng, S. P.; Cao, C. C.; Li, Y. H.; Fenske, D.; Su, C. Y. Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew. Chem., Int. Ed.2016, 55, 9932–9936.

    CAS  Google Scholar 

  36. Li, T.; Sullivan, J. E.; Rosi, N. L. Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc.2013, 135, 9984–9987.

    CAS  Google Scholar 

  37. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed.2013, 125, 3829–3833.

    Google Scholar 

  38. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron2008, 64, 8553–8557.

    CAS  Google Scholar 

  39. Al-Ghoul, M.; Issa, R.; Hmadeh, M. Synthesis, size and structural evolution of metal-organic framework-199 via a reaction-diffusion process at room temperature. CrystEngComm2017, 19, 608–612.

    CAS  Google Scholar 

  40. Zhuang, J. L.; Ceglarek, D.; Pethuraj, S.; Terfort, A. Rapid room-temperature synthesis of metal-organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater.2011, 21, 1442–1447.

    CAS  Google Scholar 

  41. Al Akhrass, G. A.; Ammar, M.; El-Rassy, H.; Al-Ghoul, M. Self-assembled lanthanum hydroxide microspheres within a reaction-diffusion framework: Synthesis, characterization, control and application. RSC Adv.2016, 6, 3433–3439.

    CAS  Google Scholar 

  42. Saliba, D.; Ezzeddine, A.; Emwas, A. H.; Khashab, N. M.; Al-Ghoul, M. Dynamics and mechanism of intercalation/de-intercalation of rhodamine B during the polymorphic transformation of the CdAl layered double hydroxide to the brucite-like cadmium hydroxide. Ryst. Growth Des.2016, 16, 4327–4335.

    CAS  Google Scholar 

  43. Saliba, D.; Ezzeddine, A.; Sougrat, R.; Khashab, N. M.; Hmadeh, M.; Al-Ghoul, M. Cadmium-aluminum layered double hydroxide microspheres for photocatalytic CO2 reduction. ChemSusChem2016, 9, 800–805.

    CAS  Google Scholar 

  44. Rahbani, J.; Ammar, M.; Al-Ghoul, M. Reaction-diffusion framework: The mechanism of the polymorphic transition of α- to β-cobalt hydroxide. J. Phys. Chem. A2013, 117, 1685–1691.

    CAS  Google Scholar 

  45. Saliba, D.; Al-Ghoul, M. Stability and particle size control of self-assembled cadmium-aluminum layered double hydroxide. CrystEngComm2016, 18, 8445–8453.

    CAS  Google Scholar 

  46. Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc.2018, 140, 1812–1823.

    CAS  Google Scholar 

  47. Redfield, P. Fluid technologies: The Bush Pump, the LifeStraw® and microworlds of humanitarian design. Soc. Stud. Sci.2016, 46, 159–183.

    Google Scholar 

  48. Eddaoudi, M.; Kim, J.; Wachter, J.; Chae, H. K.; O’keeffe, M.; Yaghi, O. M. Porous metal-organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc.2001, 123, 4368–4369.

    CAS  Google Scholar 

  49. Venna, S. R.; Jasinski, J. B.; Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc.2010, 132, 18030–18033.

    CAS  Google Scholar 

  50. Fang, Z. L.; Dürholt, J. P.; Kauer, M.; Zhang, W. H.; Lochenie, C.; Jee, B.; Albada, B.; Metzler-Nolte, N.; Pöppl, A.; Weber, B. et al. Structural complexity in metal-organic frameworks: Simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. J. Am. Chem. Soc.2014, 136, 9627–9636.

    CAS  Google Scholar 

  51. Park, J.; Wang, Z. U.; Sun, L. B.; Chen, Y. P.; Zhou, H. C. Introduction of functionalized mesopores to metal-organic frameworks via metal-ligand-fragment coassembly. J. Am. Chem. Soc.2012, 134, 20110–20116.

    CAS  Google Scholar 

  52. Xiong, L.; Yang, Y.; Mai, J. X.; Sun, W. L.; Zhang, C. Y.; Wei, D. P.; Chen, Q.; Ni, J. R. Adsorption behavior of methylene blue onto titanate nanotubes. Chem. Eng. J.2010, 156, 313–320.

    CAS  Google Scholar 

  53. Raposo, F.; De La Rubia, M. A.; Borja, R. Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size. J. Hazard. Mater.2009, 165, 291–299.

    CAS  Google Scholar 

  54. Li, L.; Liu, X. L.; Geng, H. Y.; Hu, B.; Song, G. W.; Xu, Z. S. A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. J. Mater. Chem. A2013, 1, 10292–10299.

    CAS  Google Scholar 

  55. Selvam, P. P.; Preethi, S.; Basakaralingam, P.; Thinakaran, N.; Sivasamy, A.; Sivanesan, S. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J. Hazard. Mater.2008, 155, 39–44.

    CAS  Google Scholar 

  56. Kadirvelu, K.; Karthika, C.; Vennilamani, N.; Pattabhi, S. Activated carbon from industrial solid waste as an adsorbent for the removal of rhodamine-B from aqueous solution: Kinetic and equilibrium studies. Chemosphere2005, 60, 1009–1017.

    CAS  Google Scholar 

  57. Guo, H. X.; Lin, F.; Chen, J. H.; Li, F. M.; Weng, W. Metal-organic framework MIL-125(Ti) for efficient adsorptive removal of rhodamine B from aqueous solution. Appl. Org. Chem.2015, 29, 12–19.

    CAS  Google Scholar 

  58. Eftekhari, S.; Habibi-Yangjeh, A.; Sohrabnezhad, S. Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies. J. Hazard. Mater.2010, 178, 349–355.

    CAS  Google Scholar 

  59. Dukhin, S. J. Lyklema (Ed.). Fundamentals of Interface and Colloid Science, vol. IV, Academic Press, New York-Toronto (2005). Adv. Colloid Interface Sci.2006, 119, 69–70.

    Google Scholar 

  60. Fontecha-Cámara, M. A.; López-Ramón, M. V.; Álvarez-Merino, M. A.; Moreno-Castilla, C. Effect of surface chemistry, solution pH, and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber. Langmuir2007, 23, 1242–1247.

    Google Scholar 

  61. Blanco-Brieva, G.; Campos-Martin, J. M.; Al-Zahrani, S. M.; Fierro, J. L. G. Removal of refractory organic sulfur compounds in fossil fuels using MOF sorbents. Global NEST J.2010, 12, 296–304.

    Google Scholar 

  62. Banerjee, A.; Gokhale, R.; Bhatnagar, S.; Jog, J.; Bhardwaj, M.; Lefez, B.; Hannoyer, B.; Ogale, S. MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J. Mater. Chem.2012, 22, 19694–19699.

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Manal Ammar and Dr. Ali Youssef for their substantial contribution and support. We thank the funding provided by the American University of Beirut Research Board and the K. Shair Central Research Science Laboratory. M. G. acknowledges the support of the Arab Fund Fellowship Program. We also acknowledge the funding provided by the Lebanese National Council for Scientific Research (Nos. 103496 and 103487) and the Masri Institute (No. 103214).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mazen Al-Ghoul or Mohamad Hmadeh.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, R., Ibrahim, F.A., Al-Ghoul, M. et al. Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process. Nano Res. 14, 423–431 (2021). https://doi.org/10.1007/s12274-020-2870-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2870-1

Keywords

Navigation