Abstract
Nitrogen fixation is a vital process for both nature and industry. Whereas the nitrogenase can reduce nitrogen in ambient environment in nature, the industrialized Haber-Bosch process is a high temperature and high-pressure process. Since the discovery of the first dinitrogen complex in 1965, many dinitrogen complexes are prepared in a homogeneous solution to mimic the nitrogenase enzyme in nature. However, studies of the heterogeneous process on surface are rarely addressed. Moreover, molecular scale characterization for such dinitrogen complex is lacking. Here, we present a simple model system to investigate, at the single-molecule level, the binding of dinitrogen on a surface confined iron phthalocyanine (FePc) monolayer through the combination of in-situ low-temperature scanning tunneling microscopy (LT-STM) and X-ray photoelectron spectroscopy (XPS) measurements. The iron center in FePc molecule deposited on Au(111) and highly oriented pyrolytic graphite (HOPG) surface can adsorb dinitrogen molecule at room temperature and low pressure. A comparative study reveals that the adsorption behaviors of FePc on these two different substrates are identical. Chemical bond is formed between the dinitrogen and the Fe atom in the FePc molecule, which greatly modifies the electronic structure of FePc. The bonding is reversible and can be manipulated by applying bias using a STM tip or by thermal annealing.

This is a preview of subscription content, access via your institution.
References
Avenier, P.; Taoufik, M.; Lesage, A.; Solans-Monfort, X.; Baudouin, A.; de Mallmann, A.; Veyre, L.; Basset, J. M.; Eisenstein, O.; Emsley, L. et al. Dinitrogen dissociation on an isolated surface tantalum atom. Science2007, 317, 1056–1060.
Howard, J. B.; Rees, D. C. Structural basis of biological nitrogen fixation. Chem. Rev.1996, 96, 2965–2982.
Rodriguez, M. M.; Bill, E.; Brennessel, W. W.; Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science2011, 334, 780–783.
Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science2014, 345, 610.
Bazhenova, T. A.; Shilov, A. E. Nitrogen fixation in solution. Coord. Chem. Rev.1995, 144, 69–145.
Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev.2014, 43, 547–564.
Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”? Angew. Chem., Int. Ed.2003, 42, 2004–2008.
Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science2005, 307, 555–558.
Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel Lecture). Angew. Chem., Int. Ed.2008, 47, 3524–3535.
Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem2015, 8, 2180–2186.
Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The Haber-Bosch process revisited: On the real structure and stability of “Ammonia Iron” under working conditions. Angew. Chem., Int. Ed.2013, 52, 12723–12726.
van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev.2014, 43, 5183–5191.
Hoffman, B. M.; Lukoyanov, D.; Dean, D. R.; Seefeldt, L. C. Nitrogenase: A draft mechanism. Acc. Chem. Res.2013, 46, 587–595.
Howard, J. B.; Rees, D. C. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. USA2006, 103, 17088–17093.
Schrock, R. R. Reduction of dinitrogen. Proc. Natl. Acad. Sci. USA2006, 103, 17087.
Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Nitrogenase MoFe-Protein at 1.16 Å resolution: A central ligand in the FeMo-Cofactor. Science2002, 297, 1696–1700.
Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal.2018, 1, 490–500.
Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science2003, 301, 76–78.
Shima, T.; Hu, S. W.; Luo, G.; Kang, X. H.; Luo, Y.; Hou, Z. M. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science2013, 340, 1549–1552.
Spencer, L. P.; MacKay, B. A.; Patrick, B. O.; Fryzuk, M. D. Inner-sphere two-electron reduction leads to cleavage and functionalization of coordinated dinitrogen. Proc. Natl. Acad. Sci. USA2006, 103, 17094–17098.
Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. On the feasibility of N2 fixation via a single-site FeI/FeIV cycle: Spectroscopic studies of FeI(N2)FeI, FeIV N, and related species. Proc. Natl. Acad. Sci. USA2006, 103, 17107–17112.
Leigh, G. J. So that’s how it’s done—Maybe. Science2003, 301, 55–56.
Fryzuk, M. D. More can be better in N2 activation. Science2013, 340, 1530–1531.
Fryzuk, M. D. N2 coordination. Chem. Commun.2013, 49, 4866–4868.
Fryzuk, M. D. Side-on end-on bound dinitrogen: An activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res.2009, 42, 127–133.
Akagi, F.; Matsuo, T.; Kawaguchi, H. Dinitrogen cleavage by a diniobium tetrahydride complex: Formation of a nitride and its conversion into imide species. Angew. Chem., Int. Ed.2007, 46, 8778–8781.
Sivasankar, C.; Baskaran, S.; Tamizmani, M.; Ramakrishna, K. Lessons learned and lessons to be learned for developing homogeneous transition metal complexes catalyzed reduction of N2 to ammonia. J. Organomet. Chem.2014, 752, 44–58.
Tanabe, Y.; Nishibayashi, Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev.2013, 257, 2551–2564.
Crossland, J. L.; Tyler, D. R. Iron-dinitrogen coordination chemistry: Dinitrogen activation and reactivity. Coord. Chem. Rev.2010, 254, 1883–1894.
Pool, J. A.; Lobkovsky, E.; Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature2004, 427, 527–530.
Hazari, N. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem. Soc. Rev.2010, 39, 4044–4056.
MacLeod, K. C.; Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Commun.2013, 5, 559–565.
MacKay, B. A.; Fryzuk, M. D. Dinitrogen coordination chemistry: On the biomimetic borderlands. Chem. Rev.2004, 104, 385–402.
Gambarotta, S.; Scott, J. Multimetallic cooperative activation of N2. Angew. Chem., Int. Ed.2004, 43, 5298–5308.
Connor, G. P.; Holland, P. L. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catal. Today2017, 286, 21–40.
Burford, R. J.; Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem.2017, 1, 0026.
Hieringer, W.; Flechtner, K.; Kretschmann, A.; Seufert, K.; Auwärter, W.; Barth, J. V.; Görling, A.; Steinrück, H. P.; Gottfried, J. M. The surface trans effect: Influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins. J. Am. Chem. Soc.2011, 133, 6206–6222.
Gu, J. Y.; Cai, Z. F.; Wang, D.; Wan, L. J. Single-molecule imaging of iron-phthalocyanine-catalyzed oxygen reduction reaction by in situ scanning tunneling microscopy. ACS Nano2016, 10, 8746–8750.
Zhang, J. L.; Wang, Z. Z.; Zhong, J. Q.; Yuan, K. D.; Shen, Q.; Xu, L. L.; Niu, T. C.; Gu, C. D.; Wright, C. A.; Tadich, A. et al. Single-molecule imaging of activated nitrogen adsorption on individual manganese phthalocyanine. Nano Lett.2015, 15, 3181–3188.
Kim, H.; Chang, Y. H.; Jang, W. J.; Lee, E. S.; Kim, Y. H.; Kahng, S. J. Probing single-molecule dissociations from a bimolecular complex NO-Co-porphyrin. ACS Nano2015, 9, 7722–7728.
Chang, M. H.; Chang, Y. H.; Kim, N. Y.; Kim, H.; Lee, S. H.; Choi, M. S.; Kim, Y. H.; Kahng, S. J. Tuning and sensing spin interactions in Co-porphyrin/Au with NH3 and NO2 binding. Phys. Rev. B2019, 100, 245406.
Ma, X. F.; Chen, H. Z.; Shi, M. M.; Wu, G.; Wang, M.; Huang, J. High gas-sensitivity and selectivity of fluorinated zinc phthalocyanine film to some non-oxidizing gases at room temperature. Thin Solid Films2005, 489, 257–261.
Newton, M. I.; Starke, T. K. H.; Willis, M. R.; McHale, G. NO2 detection at room temperature with copper phthalocyanine thin film devices. Sens. Actuators B: Chem.2000, 67, 307–311.
Ho, K. C.; Tsou, Y. H. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films. Sens. Actuators: B Chem.2001, 77, 253–259.
Isvoranu, C.; Wang, B.; Ataman, E.; Knudsen, J.; Schulte, K.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Comparison of the carbonyl and nitrosyl complexes formed by adsorption of CO and NO on monolayers of iron phthalocyanine on Au(111). J. Phys. Chem. C2011, 115, 24718–24727.
Dubey, M.; Bernasek, S. L.; Schwartz, J. Highly sensitive nitric oxide detection using X-ray photoelectron spectroscopy. J. Am. Chem. Soc.2007, 129, 6980–6981.
Praneeth, V. K. K.; Paulat, F.; Berto, T. C.; George, S. D.; Näther, C.; Sulok, C. D.; Lehnert, N. Electronic structure of six-coordinate iron(III)–porphyrin NO adducts: The elusive iron(III)–NO(radical) state and its influence on the properties of these complexes. J. Am. Chem. Soc.2008, 130, 15288–15303.
Strózecka, A.; Soriano, M.; Pascual, J. I.; Palacios, J. J. Reversible change of the spin state in a manganese phthalocyanine by coordination of CO molecule. Phys. Rev. Lett.2012, 109, 147202.
Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Pyridine adsorption on single-layer iron phthalocyanine on Au(111). J. Phys. Chem. C2011, 115, 20201–20208.
Cheng, Z. H.; Gao, L.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; He, X. B.; Du, S. X.; Gao, H. J. Epitaxial growth of iron phthalocyanine at the initial stage on Au(111) surface. J. Phys. Chem. C2007, 111, 2656–2660.
Jiang, Y. H.; Xiao, W. D.; Liu, L. W.; Zhang, L. Z.; Lian, J. C.; Yang, K.; Du, S. X.; Gao, H. J. Self-assembly of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C2011, 115, 21750–21754.
Deimel, P. S.; Bababrik, R. M.; Wang, B.; Blowey, P. J.; Rochford, L. A.; Thakur, P. K.; Lee, T. L.; Bocquet, M. L.; Barth, J. V.; Woodruff, D. P. et al. Direct quantitative identification of the “surface trans-effect”. Chem. Sci.2016, 7, 5647–5656.
Flechtner, K.; Kretschmann, A.; Steinrück, H. P.; Gottfried, J. M. NO-induced reversible switching of the electronic interaction between a porphyrin-coordinated cobalt ion and a silver surface. J. Am. Chem. Soc.2007, 129, 12110–12111.
Murphy, B. E.; Krasnikov, S. A.; Sergeeva, N. N.; Cafolla, A. A.; Preobrajenski, A. B.; Chaika, A. N.; Lübben, O.; Shvets, I. V. Homolytic cleavage of molecular oxygen by manganese porphyrins supported on Ag(111). ACS Nano2014, 8, 5190–5198.
Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Ammonia adsorption on iron phthalocyanine on Au(111): Influence on adsorbate–substrate coupling and molecular spin. J. Chem. Phys.2011, 134, 114710.
Cheng, Z. H.; Gao, L.; Deng, Z. T.; Jiang, N.; Liu, Q.; Shi, D. X.; Du, S. X.; Guo, H. M.; Gao, H. J. Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage. J. Phys. Chem. C2007, 111, 9240–9244.
Massimi, L.; Angelucci, M.; Gargiani, P.; Betti, M. G.; Montoro, S.; Mariani, C. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy. J. Chem. Phys.2014, 140, 244704.
Bai, Y.; Sekita, M.; Schmid, M.; Bischof, T.; Steinrück, H. P.; Gottfried, J. M. Interfacial coordination interactions studied on cobalt octaethylporphyrin and cobalt tetraphenylporphyrin monolayers on Au(111). Phys. Chem. Chem. Phys.2010, 12, 4336–4344.
Schmid, M.; Zirzlmeier, J.; Steinrück, H. P.; Gottfried, J. M. Interfacial interactions of Iron(II) tetrapyrrole complexes on Au(111). J. Phys. Chem. C2011, 115, 17028–17035.
Isvoranu, C.; Wang, B.; Schulte, K.; Ataman, E.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Tuning the spin state of iron phthalocyanine by ligand adsorption. J. Phys.: Condens. Matter2010, 22, 472002.
Hartley, F. R. The cis- and trans-effects of ligands. Chem. Soc. Rev.1973, 2, 163–179.
Walzer, K.; Hietschold, M. STM and STS investigation of ultrathin tin phthalocyanine layers adsorbed on HOPG(0001) and Au(111). Surf. Sci.2001, 471, 1–10.
Isvoranu, C.; Åhlund, J.; Wang, B.; Ataman, E.; Mårtensson, N.; Puglia, C.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Electron spectroscopy study of the initial stages of iron phthalocyanine growth on highly oriented pyrolitic graphite. J. Chem. Phys.2009, 131, 214709.
Acknowledgements
Authors acknowledge the financial support from Singapore National Research Foundation under NRF2017NRF-NSFC001-007, Singapore MOE grant of MOE2019-T2-1-002 and NUS Flagship Green Energy Program.
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Gu, C., Zhang, J.L., Zhong, J.Q. et al. Single-molecule imaging of dinitrogen molecule adsorption on individual iron phthalocyanine. Nano Res. 13, 2393–2398 (2020). https://doi.org/10.1007/s12274-020-2863-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-020-2863-0
Keywords
- single-molecule
- dinitrogen
- iron phthalocyanine
- axial coordination