Periodic surface functional group density on graphene via laser-induced substrate patterning at Si/SiO2 interface

Abstract

Controlling the spatial distribution of functional groups on 2D materials on a micrometer scale and below represents a fascinating opportunity to achieve anisotropic (opto)electronic properties of these materials. Periodic patterns of covalent functionalization can lead to periodic potentials in the monolayer; however, creating such superstructures is very challenging. Here, we describe an original approach to the periodic functionalization of graphene induced by substrate patterning using a pulsed laser. Laser-induced periodic surface structures (LIPSS) are produced on silicon wafers with thermally-grown oxide layers. The irradiation conditions for the formation of LIPSS confined at the SiO2/Si interface have been unravelled. LIPSS imprint their periodicity to the reactivity of the monolayer graphene placed on the substrate via modulation of its local doping level. This method is clean, straightforward and scalable with high spatial resolution.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater.2007, 6, 183–191.

    CAS  Google Scholar 

  2. [2]

    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater.2007, 6, 652–655.

    CAS  Google Scholar 

  3. [3]

    Kostarelos, K.; Novoselov, K. S. Graphene devices for life. Nat. Nanotechnol.2014, 9, 744–745.

    CAS  Google Scholar 

  4. [4]

    Criado, A.; Melchionna, M.; Marchesan, S.; Prato, M. The covalent functionalization of graphene on substrates. Angew. Chem., Int. Ed.2015, 54, 10734–10750.

    CAS  Google Scholar 

  5. [5]

    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc.2008, 130, 16201–16206.

    CAS  Google Scholar 

  6. [6]

    Ferreira, F. V.; De Simone Cividanes, L.; Brito, F. S.; de Menezes, B. R. C.; Franceschi, W.; Simonetti, E. A. N.; Thim, G. P. Functionalizing Graphene and Carbon Nanotubes: A Review; Cham: Springer, 2016.

  7. [7]

    Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev.2012, 112, 6156–6214.

    CAS  Google Scholar 

  8. [8]

    Zhao, G. K.; Li, X. M.; Huang, M. R.; Zhen, Z.; Zhong, Y. J.; Chen, Q.; Zhao, X. L.; He, Y. J.; Hu, R. R.; Yang, T. T. et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev.2017, 46, 4417–4449.

    CAS  Google Scholar 

  9. [9]

    Bottari, G.; Herranz, M. Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D. M.; Hirsch, A.; Martín, N.; D’Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev.2017, 46, 4464–4500.

    CAS  Google Scholar 

  10. [10]

    Valenta, L.; Kovaříček, P.; Valeš, V.; Bastl, Z.; Drogowska, K. A.; Verhagen, T. A.; Cibulka, R.; Kalbáč, M. Spatially resolved covalent functionalization patterns on graphene. Angew. Chem., Int. Ed.2019, 58, 1324–1328.

    CAS  Google Scholar 

  11. [11]

    Navarro, J. J.; Leret, S.; Calleja, F.; Stradi, D.; Black, A.; Bernardo-Gavito, R.; Garnica, M.; Granados, D.; Vázquez de Parga, A. L.; Pérez, E. M. et al. Organic covalent patterning of nanostructured graphene with selectivity at the atomic level. Nano Lett.2016, 16, 355–361.

    CAS  Google Scholar 

  12. [12]

    Balog, R.; Andersen, M.; Jørgensen, B.; Sljivancanin, Z.; Hammer, B.; Baraldi, A.; Larciprete, R.; Hofmann, P.; Hornekær, L.; Lizzit, S. Controlling hydrogenation of graphene on Ir(111). ACS Nano2013, 7, 3823–3832.

    CAS  Google Scholar 

  13. [13]

    Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater.2010, 9, 315–319.

    CAS  Google Scholar 

  14. [14]

    Gobbi, M.; Bonacchi, S.; Lian, J. X.; Liu, Y.; Wang, X. Y.; Stoeckel, M. A.; Squillaci, M. A.; D’Avino, G.; Narita, A.; Müllen, K. et al. Periodic potentials in hybrid van der waals heterostructures formed by supramolecular lattices on graphene. Nat. Commun.2017, 8, 14767.

    CAS  Google Scholar 

  15. [15]

    Zhou, X. B.; Qi, Y.; Shi, J. P.; Niu, J. J.; Liu, M. X.; Zhang, G. X.; Li, Q. C.; Zhang, Z. P.; Hong, M.; Ji, Q. Q. et al. Modulating the electronic properties of monolayer graphene using a periodic quasi-one-dimensional potential generated by hex-reconstructed Au(001). ACS Nano2016, 10, 7550–7557.

    CAS  Google Scholar 

  16. [16]

    Puddy, R. K.; Scard, P. H.; Tyndall, D.; Connolly, M. R.; Smith, C. G.; Jones, G. A. C.; Lombardo, A.; Ferrari, A. C.; Buitelaar, M. R. Atomic force microscope nanolithography of graphene: Cuts, pseudocuts, and tip current measurements. Appl. Phys. Lett.2011, 98, 133120.

    Google Scholar 

  17. [17]

    Ye, D.; Wu, S. Q.; Yu, Y.; Liu, L.; Lu, X. P.; Wu, Y. Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition. Appl. Phys. Lett.2014, 104, 103105.

    Google Scholar 

  18. [18]

    Stubrov, Y.; Nikolenko, A.; Strelchuk, V.; Nedilko, S.; Chornii, V. Structural modification of single-layer graphene under laser irradiation featured by micro-Raman spectroscopy. Nanoscale Res. Lett.2017, 12, 297.

    Google Scholar 

  19. [19]

    Bog, U.; de los Santos Pereira, A.; Mueller, S. L.; Havenridge, S.; Parrillo, V.; Bruns, M.; Holmes, A. E.; Rodriguez-Emmenegger, C.; Fuchs, H.; Hirtz, M. Clickable antifouling polymer brushes for polymer pen lithography. ACS Appl. Mater. Interfaces2017, 9, 12109–12117.

    CAS  Google Scholar 

  20. [20]

    Hirtz, M.; Varey, S.; Fuchs, H.; Vijayaraghavan, A. Attoliter chemistry for nanoscale functionalization of graphene. ACS Appl. Mater. Interfaces2016, 8, 33371–33376.

    CAS  Google Scholar 

  21. [21]

    Wang, W. M.; Stander, N.; Stoltenberg, R. M.; Goldhaber-Gordon, D.; Bao, Z. N. Dippen nanolithography of electrical contacts to single graphene flakes. ACS Nano2010, 4, 6409–6416.

    CAS  Google Scholar 

  22. [22]

    Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A. “Dip-pen” nanolithography. Science1999, 283, 661–663.

    CAS  Google Scholar 

  23. [23]

    Jaschke, M.; Butt, H. J. Deposition of organic material by the tip of a scanning force microscope. Langmuir1995, 11, 1061–1064.

    CAS  Google Scholar 

  24. [24]

    Sun, Z. Z.; Pint, C. L.; Marcano, D. C.; Zhang, C. G.; Yao, J.; Ruan, G. D.; Yan, Z.; Zhu, Y.; Hauge, R. H.; Tour, J. M. Towards hybrid superlattices in graphene. Nat. Commun.2011, 2, 559.

    Google Scholar 

  25. [25]

    Hallam, T.; Berner, N. C.; Yim, C.; Duesberg, G. S. Strain, bubbles, dirt, and folds: A study of graphene polymer-assisted transfer. Adv. Mater. Interfaces2014, 1, 1400115.

    Google Scholar 

  26. [26]

    Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C. J.; Ham, M. H.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem.2012, 4, 724–732.

    CAS  Google Scholar 

  27. [27]

    Tozzini, V.; Pellegrini, V. Reversible hydrogen storage by controlled buckling of graphene layers. J. Phys. Chem. C2011, 115, 25523–25528.

    CAS  Google Scholar 

  28. [28]

    Wu, Q. Z.; Wu, Y. P.; Hao, Y. F.; Geng, J. X.; Charlton, M.; Chen, S. S.; Ren, Y. J.; Ji, H. X.; Li, H. F.; Boukhvalov, D. W. et al. Selective surface functionalization at regions of high local curvature in graphene. Chem. Commun.2013, 49, 677–679.

    Google Scholar 

  29. [29]

    Plšek, J.; Kovaříček, P.; Vales, V.; Kalbáč, M. Tuning the reactivity of graphene by surface phase orientation. Chem. —Eur. J.2017, 23, 1839–1845.

    Google Scholar 

  30. [30]

    Costa, S. D.; Ek Weis, J.; Frank, O.; Kalbac, M. Effect of layer number and layer stacking registry on the formation and quantification of defects in graphene. Carbon2016, 98, 592–598.

    CAS  Google Scholar 

  31. [31]

    Pacakova, B.; Vejpravova, J.; Repko, A.; Mantlikova, A.; Kalbac, M. Formation of wrinkles on graphene induced by nanoparticles: Atomic force microscopy study. Carbon2015, 95, 573–579.

    CAS  Google Scholar 

  32. [32]

    Vejpravova, J.; Pacakova, B.; Endres, J.; Mantlikova, A.; Verhagen, T.; Vales, V.; Frank, O.; Kalbac, M. Graphene wrinkling induced by monodisperse nanoparticles: Facile control and quantification. Sci. Rep.2015, 5, 15061.

    CAS  Google Scholar 

  33. [33]

    Vales, V.; Verhagen, T.; Vejpravová, J.; Frank, O.; Kalbáč, M. Addressing asymmetry of the charge and strain in a two-dimensional fullerene peapod. Nanoscale2016, 8, 735–740.

    CAS  Google Scholar 

  34. [34]

    Birnbaum, M. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys.1965, 36, 3688–3689.

    CAS  Google Scholar 

  35. [35]

    Bonse, J.; Krüger, J.; Höhm, S.; Rosenfeld, A. Femtosecond laser-induced periodic surface structures. J. Laser Appl.2012, 24, 042006.

    Google Scholar 

  36. [36]

    Rebollar, E.; Rueda, D. R.; Martín-Fabiani, I.; Rodríguez-Rodríguez, Á.; García-Gutiérrez, M. C.; Portale, G.; Castillejo, M.; Ezquerra, T. A. In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle x-ray scattering. Langmuir2015, 31, 3973–3981.

    CAS  Google Scholar 

  37. [37]

    Bonse, J.; Höhm, S.; Kirner, S. V.; Rosenfeld, A.; Krüger, J. Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron.2017, 23, 9000615.

    Google Scholar 

  38. [38]

    Maragkaki, S.; Derrien, T. J. Y.; Levy, Y.; Bulgakova, N. M.; Ostendorf, A.; Gurevich, E. L. Wavelength dependence of picosecond laser-induced periodic surface structures on copper. Appl. Surf. Sci.2017, 417, 88–92.

    CAS  Google Scholar 

  39. [39]

    Gnilitskyi, I.; Gruzdev, V.; Bulgakova, N. M.; Mocek, T.; Orazi, L. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses. Appl. Phys. Lett.2016, 109, 143101.

    Google Scholar 

  40. [40]

    Rodríguez-Rodríguez, Á.; Gutiérrez-Fernández, E.; García-Gutiérrez, M. C.; Nogales, A.; Ezquerra, T. A.; Rebollar, E. Synergistic effect of fullerenes on the laser-induced periodic surface structuring of poly(3-hexyl thiophene). Polymers2019, 11, 190.

    Google Scholar 

  41. [41]

    Kasischke, M.; Maragkaki, S.; Volz, S.; Ostendorf, A.; Gurevich, E. L. Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses. Appl. Surf. Sci.2018, 445, 197–203.

    CAS  Google Scholar 

  42. [42]

    Mortazavi, S.; Mollabashi, M.; Barri, R.; Gundlach, L.; Jones, K.; Xiao, J. Q.; Opila, R. L.; Shah, S. I. Ti: Sapphire laser irradiation of graphene oxide film in order to tune its structural, chemical and electrical properties: Patterning and characterizations. Appl. Surf. Sci.2020, 500, 144053.

    CAS  Google Scholar 

  43. [43]

    Beltaos, A.; Kovačević, A. G.; Matković, A.; Ralević, U.; SavićSević, S.; Jovanović, D.; Jelenković B. M.; Gajić, R. Femtosecond laser induced periodic surface structures on multi-layer graphene. J. Appl. Phys.2014, 116, 204306.

    Google Scholar 

  44. [44]

    Jiang, H. B.; Zhang, Y. L.; Liu, Y.; Fu, X. Y.; Li, Y. F.; Liu, Y. Q.; Li, C. H.; Sun, H. B. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured cu foil. Laser Photonics Rev.2016, 10, 441–450.

    CAS  Google Scholar 

  45. [45]

    Jiang, H. B.; Zhang, Y. L.; Han, D. D.; Xia, H.; Feng, J.; Chen, Q. D.; Hong, Z. R.; Sun, H. B. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv. Funct. Mater.2014, 24, 4595–4602.

    CAS  Google Scholar 

  46. [46]

    Kovalska, E.; Pavlov, I.; Deminskyi, P.; Baldycheva, A.; Ilday, F. Ö.; Kocabas, C. NLL-assisted multilayer graphene patterning. ACS Omega2018, 3, 1546–1554.

    CAS  Google Scholar 

  47. [47]

    Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun.2012, 3, 1024.

    Google Scholar 

  48. [48]

    Liu, J. M. Simple technique for measurements of pulsed gaussian-beam spot sizes. Opt. Lett.1982, 7, 196–198.

    CAS  Google Scholar 

  49. [49]

    Kalbac, M.; Frank, O.; Kavan, L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon2012, 50, 3682–3687.

    CAS  Google Scholar 

  50. [50]

    Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cen. Eur. J. Phys.2012, 10, 181–188.

    Google Scholar 

  51. [51]

    Mirza, I.; Bulgakova, N. M.; Tomáštík, J.; Michálek, V.; Haderka, O.; Fekete, L.; Mocek, T. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown. Sci. Rep.2016, 6, 39133.

    CAS  Google Scholar 

  52. [52]

    Sipe, J. E.; Young, J. F.; Preston, J. S.; van Driel, H. M. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B1983, 27, 1141–1154.

    CAS  Google Scholar 

  53. [53]

    Levy, Y.; Derrien, T. J. Y.; Bulgakova, N. M.; Gurevich, E. L.; Mocek, T. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci.2016, 374, 157–164.

    CAS  Google Scholar 

  54. [54]

    Brückner, R. Properties and structure of vitreous silica. I. J. Non-Cryst. Solids1970, 5, 123–175.

    Google Scholar 

  55. [55]

    Huang, J.; Jiang, L.; Li, X. W.; Wei, Q. S.; Wang, Z. P.; Li, B. H.; Huang, L. L.; Wang, A. D.; Wang, Z.; Li, M. et al. Cylindrically focused nonablative femtosecond laser processing of long-range uniform periodic surface structures with tunable diffraction efficiency. Adv. Opt. Mater.2019, 7, 1900706.

    CAS  Google Scholar 

  56. [56]

    Thompson, M. O.; Mayer, J. W.; Cullis, A. G.; Webber, H. C.; Chew, N. G.; Poate, J. M.; Jacobson, D. C. Silicon melt, regrowth, and amorphization velocities during pulsed laser irradiation. Phys. Rev. Lett.1983, 50, 896–899.

    CAS  Google Scholar 

  57. [57]

    Derrien, T. J. Y.; Bulgakova, N. M. Modeling of silicon in femtosecond laser-induced modification regimes: Accounting for Ambipolar diffusion. In Proceedings SPIE 10228, Nonlinear Optics and Applications X, Prague, Czech Republic, 2017, pp102280E.

  58. [58]

    Tu, Y. H.; Tersoff, J. Structure and energetics of the Si-SiO2 interface. Phys. Rev. Lett.2000, 84, 4393–4396.

    CAS  Google Scholar 

  59. [59]

    Shugaev, M. V.; Gnilitskyi, I.; Bulgakova, N. M.; Zhigilei, L. V. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys. Rev. B2017, 96, 205429.

    Google Scholar 

  60. [60]

    Sokolowski-Tinten, K.; Ziegler, W.; von der Linde, D.; Siegal, M. P.; Overmyer, D. L. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films. Appl. Phys. Lett.2005, 86, 121911.

    Google Scholar 

  61. [61]

    Bousa, M.; Anagnostopoulos, G.; del Corro, E.; Drogowska, K.; Pekarek, J.; Kavan, L.; Kalbac, M.; Parthenios, J.; Papagelis, K.; Galiotis, C.; Frank, O. Stress and charge transfer in uniaxially strained CVD graphene. Phys. Status Solidi B2016, 253, 2355–2361.

    CAS  Google Scholar 

  62. [62]

    Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G. F. Raman Spectroscopy in Graphene Related Systems; Wiley: Weinheim, 2011.

    Google Scholar 

  63. [63]

    Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon2010, 48, 1592–1597.

    CAS  Google Scholar 

  64. [64]

    Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett.2011, 11, 3190–3196.

    Google Scholar 

  65. [65]

    Kovaříček, P.; Vrkoslav, V.; Plšek, J.; Bastl, Z.; Fridrichová, M.; Drogowska, K.; Kalbáč, M. Extended characterization methods for covalent functionalization of graphene on copper. Carbon2017, 118, 200–207.

    Google Scholar 

  66. [66]

    Menanteau, T.; Dias, M.; Levillain, E.; Downard, A. J.; Breton, T. Electrografting via diazonium chemistry: The key role of the aryl substituent in the layer growth mechanism. J. Phys. Chem. C2016, 120, 4423–4429.

    CAS  Google Scholar 

  67. [67]

    Bouša, D.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Šturala, J.; Pumera, M.; Sofer, Z. Mesomeric effects of graphene modified with diazonium salts: Substituent type and position influence its properties. Chem. -Eur. J.2015, 21, 17728–17738.

    Google Scholar 

  68. [68]

    Sampathkumar, K.; Diez-Cabanes, V.; Kovaricek, P.; del Corro, E.; Bouša, M.; Hošek, J.; Kalbac, M.; Frank, O. On the suitability of Raman spectroscopy to monitor the degree of graphene functionalization by diazonium salts. J. Phys. Chem. C2019, 123, 22397–22402.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by project No. 18-09055Y and 20-08633X awarded by Czech Science Foundation. The research of I.M., J.S., T.J.-Y.D., and N.M.B. is financed by the European Regional Development Fund and the state budget of the Czech Republic (project BIATRI, No. CZ.02.1.01/0.0/0.0/15_003/0000445; project HiLASE CoE, No. CZ.02.1.01/0.0/0.0/15_006/0000674; programme NPU I, project No. LO1602). The work was further supported by European Regional Development Fund; OP RDE; Project: “Carbon allotropes with rationalized nanointerfaces and nanolinks for environmental and biomedical applications” (No. CZ.02.1.01/0.0/0.0/16_026/0008382). The authors also acknowledge the assistance provided by the Research Infrastructures NanoEnviCz (No. LM2015073) supported by the Ministry of Education, Youth and Sports of the Czech Republic and the project Pro-NanoEnviCz (No. CZ.02.1.01/0.0/0.0/16_013/0001821) supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union-European Structural and Investments Funds in the frame of Operational Programme Research Development and Education.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Petr Kovaříček or Martin Kalbáč.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drogowska-Horna, K.A., Mirza, I., Rodriguez, A. et al. Periodic surface functional group density on graphene via laser-induced substrate patterning at Si/SiO2 interface. Nano Res. 13, 2332–2339 (2020). https://doi.org/10.1007/s12274-020-2852-3

Download citation

Keywords

  • 2D materials
  • graphene functionalization
  • LIPSS
  • periodic patterns
  • Raman spectroscopy
  • atomic force microscopy (AFM)