Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction

Abstract

Crystal phase can greatly affect the physicochemical properties and applications of nanomaterials. However, it still remains a great challenge to synthesize nanostructures with the same composition and morphology but different phases in order to explore the phase-dependent properties and applications. Herein, we report the crystal phase-controlled synthesis of PtCu alloy shells on 4H Au nanoribbons (NRBs), referred to as 4H-Au NRBs, to form the 4H-Au@PtCu core-shell NRBs. By tuning the thickness of PtCu, 4H-PtCu and face-centered cubic (fcc) phase PtCu (fcc-PtCu) alloy shells are successfully grown on the 4H-Au NRB cores. This thickness-dependent phase-controlled growth strategy can also be used to grow PtCo alloys with 4H or fcc phase on 4H-Au NRBs. Significantly, when used as electrocatalysts for the ethanol oxidation reaction (EOR) in alkaline media, the 4H-Au@4H-PtCu NRBs show much better EOR performance than the 4H-Au@fcc-PtCu NRBs, and both of them possess superior performance compared to the commercial Pt black. Our study provides a strategy on phase-controlled synthesis of nanomaterials used for crystal phase-dependent applications.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Cao, X.; Han, Y.; Gao, C. Z.; Xu, Y.; Huang, X. M.; Willander, M.; Wang, N. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy2014, 9, 301–308.

    CAS  Google Scholar 

  2. [2]

    Liu, S. L.; Zhang, Q. H.; Li, Y. F.; Han, M.; Gu, L.; Nan, C. W.; Bao, J. C.; Dai, Z. H. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity. J. Am. Chem. Soc.2015, 137, 2820–2823.

    CAS  Google Scholar 

  3. [3]

    Wu, Y. E.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc.2014, 136, 11594–11597.

    CAS  Google Scholar 

  4. [4]

    Shi, Q. R.; Zhang, P. N.; Li, Y. J.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Synthesis of open-mouthed, yolk-shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis. Chem. Sci.2015, 6, 4350–4357.

    CAS  Google Scholar 

  5. [5]

    Saleem, F.; Xu, B.; Ni, B.; Liu, H. L.; Nosheen, F.; Li, H. Y.; Wang, X. Atomically thick Pt-Cu Nanosheets: Self-assembled sandwich and nanoring-like structures. Adv. Mater.2015, 27, 2013–2018.

    CAS  Google Scholar 

  6. [6]

    Cui, X. Y.; Zhang, Z. C.; Gong, Y.; Saleem, F.; Chen, B.; Du, Y. H.; Lai, Z. C.; Yang, N. L.; Li, B.; Gu, L. et al. Defect-rich, candied haws-shaped AuPtNi alloy nanostructures for highly efficient electrocatalysis. CCS Chem.2020, 2, 24–30.

    Google Scholar 

  7. [7]

    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014, 343, 1339–1343.

    CAS  Google Scholar 

  8. [8]

    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem.2010, 2, 454–460.

    CAS  Google Scholar 

  9. [9]

    Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeis, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science2016, 352, 73–76.

    CAS  Google Scholar 

  10. [10]

    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science2009, 324, 1302–1305.

    CAS  Google Scholar 

  11. [11]

    Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc.2010, 132, 7568–7569.

    CAS  Google Scholar 

  12. [12]

    Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; Xia, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties. J. Am. Chem. Soc.2010, 132, 11372–11378.

    CAS  Google Scholar 

  13. [13]

    Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed.2015, 54, 3797–3801.

    CAS  Google Scholar 

  14. [14]

    Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed.2016, 55, 12859–12863.

    CAS  Google Scholar 

  15. [15]

    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science2007, 316, 732–735.

    CAS  Google Scholar 

  16. [16]

    Chen, B.; Sun, G. Z.; Wang, J.; Liu, G. G.; Tan, C. L.; Chen, Y.; Cheng, H. F.; Chen, J. Z.; Ma, Q. L.; Huang, L. et al. Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chem. Commun.2020, 56, 5131–5134.

    CAS  Google Scholar 

  17. [17]

    Fan, Z. X.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev.2016, 45, 63–82.

    CAS  Google Scholar 

  18. [18]

    Fan, Z. X.; Huang, X.; Chen, Y.; Huang, W.; Zhang, H. Facile synthesis of gold nanomaterials with unusual crystal structures. Nat. Protoc.2017, 12, 2367–2376.

    CAS  Google Scholar 

  19. [19]

    Fan, Z. X.; Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res.2016, 49, 2841–2850.

    CAS  Google Scholar 

  20. [20]

    Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater.2018, 30, 1707189.

    Google Scholar 

  21. [21]

    Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev.2018, 118, 6409–6455.

    CAS  Google Scholar 

  22. [22]

    Huang, J. T.; Niu, W. X.; Li, C. L.; Tan, C. L.; Yin, P. F.; Cheng, H. F.; Hu, Z. N.; Yang, N. L.; He, Q. Y.; Nam, G. H. et al. In-situ probing of crystal-phase-dependent photocatalytic activities of Au nanostructures by surface-enhanced Raman spectroscopy. ACS Mater. Lett.2020, 2, 409–414.

    CAS  Google Scholar 

  23. [23]

    Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem.2020, 4, 243–256.

    CAS  Google Scholar 

  24. [24]

    Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun.2017, 8, 15131.

    Google Scholar 

  25. [25]

    Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater.2018, 30, 1801741.

    Google Scholar 

  26. [26]

    Lu, Q. P.; Wang, A. L.; Gong, Y.; Hao, W.; Cheng, H. F.; Chen, J. Z.; Li, B.; Yang, N. L.; Niu, W. X.; Wang, J. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem.2018, 10, 456–461.

    CAS  Google Scholar 

  27. [27]

    Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun.2015, 6, 7684.

    CAS  Google Scholar 

  28. [28]

    Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater.2017, 29, 1701331.

    Google Scholar 

  29. [29]

    Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater.2018, 30, 1803234.

    Google Scholar 

  30. [30]

    Yun, Q. B.; Lu, Q. P.; Li, C. L.; Chen, B.; Zhang, Q. H.; He, Q. Y.; Hu, Z. N.; Zhang, Z. C.; Ge, Y. Y.; Yang, N. L. et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano2019, 13, 14329–14336.

    CAS  Google Scholar 

  31. [31]

    Liu, Z. Q.; Zhang, X.; Gong, Y.; Lu, Q. P.; Zhang, Z. C.; Cheng, H. F.; Ma, Q. L.; Chen, J. Z.; Zhao, M. T.; Chen, B. et al. Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Res.2019, 12, 1301–1305.

    CAS  Google Scholar 

  32. [32]

    Fan, Z. X.; Chen, Y.; Zhu, Y. H.; Wang, J.; Li, B.; Zong, Y.; Han, Y.; Zhang, H. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci.2017, 8, 795–799.

    CAS  Google Scholar 

  33. [33]

    Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc.2016, 138, 1414–1419.

    CAS  Google Scholar 

  34. [34]

    Li, Q.; Niu, W. X.; Liu, X. C.; Chen, Y.; Wu, X. T.; Wen, X. D.; Wang, Z. W.; Zhang, H.; Quan, Z. W. Pressure-induced phase engineering of gold nanostructures. J. Am. Chem. Soc.2018, 140, 15783–15790.

    CAS  Google Scholar 

  35. [35]

    Green, C. L.; Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B2002, 106, 1036–1047.

    CAS  Google Scholar 

  36. [36]

    Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater.2016, 28, 8712–8717.

    CAS  Google Scholar 

  37. [37]

    Bian, T.; Zhang, H.; Jiang, Y. Y.; Jin, C. H.; Wu, J. B.; Yang, H.; Yang, D. R. Epitaxial growth of twinned Au-Pt core-shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett.2015, 15, 7808–7815.

    CAS  Google Scholar 

  38. [38]

    Günther, C.; Vrijmoeth, J.; Hwang, R. Q.; Behm, R. J. Strain relaxation in hexagonally close-packed metal-metal interfaces. Phys. Rev. Lett.1995, 74, 754–757.

    Google Scholar 

  39. [39]

    Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc.2016, 138, 16174–16181.

    CAS  Google Scholar 

  40. [40]

    Li, H. J.; Wu, H. X.; Zhai, Y. J.; Xu, X. L.; Jin, Y. D. Synthesis of monodisperse plasmonic Au core-Pt shell concave nanocubes with superior catalytic and electrocatalytic activity. ACS Catal.2013, 3, 2045–2051.

    CAS  Google Scholar 

  41. [41]

    Sun, X. L.; Li, D. G.; Ding, Y.; Zhu, W. L.; Guo, S. J.; Wang, Z. L.; Sun, S. H. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc.2014, 136, 5745–5749.

    CAS  Google Scholar 

  42. [42]

    Hong, W.; Wang, J.; Wang, E. K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small2014, 10, 3262–3265.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by MOE under AcRF Tier 2 (Nos. MOE2016-T2-2-103 and MOE2017-T2-1-162), and NTU under Start-Up Grant (No. M4081296.070.500000) in Singapore. We would like to acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore, for use of their electron microscopy and X-ray facilities. Z. X. F. and H. Z. thank the financial support from ITC via Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and acknowledge the start-up grants (Nos. 9380100, 9610480 and 7200651) and grants (Nos. 9610478 and 1886921) in City University of Hong Kong.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Electronic Supplementary Material

12274_2020_2849_MOESM1_ESM.pdf

Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, J., Liu, G. et al. Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Res. 13, 1970–1975 (2020). https://doi.org/10.1007/s12274-020-2849-y

Download citation

Keywords

  • crystal phase
  • 4H hexagonal
  • face-centered cubic
  • ethanol oxidation reaction
  • phase engineering of nanomaterials