Skip to main content

Flexible optoelectronic devices based on metal halide perovskites

Abstract

The unique physical and chemical properties of metal halide perovskites predestine the devices to achieve high performance in optoelectronic field. Among the numerous high qualities of perovskites, their different low-temperature synthesis methods and preparation processes make them impressive and popular materials for flexible optoelectronic devices. Mainstream perovskite devices, for instance, solar cells, photodetectors and light-emitting diodes, have been fabricated on flexible substrates and show outstanding flexibility as well as high performance. For soft wearable electronic systems, mechanical flexibility is the premier condition. Compared to common devices based on rigid substrates, flexible perovskite devices are more practical and see widespread applications in energy, detection, display, and other fields. This review summarizes the recent progress of flexible perovskite solar cells, photodetectors and light-emitting diodes. The design and fabrication of different high-performance flexible perovskite devices are introduced. Various low-dimensional perovskite materials and configurations for flexible perovskite devices are presented. In addition, the limitations and challenges for further application are also briefly discussed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc.2009, 131, 6050–6051.

    CAS  Google Scholar 

  2. [2]

    Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G. et al. MAPbI3–xClx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties. Chem. Mater.2013, 25, 4613–4618.

    CAS  Google Scholar 

  3. [3]

    Chen, H.; Liu, D. T.; Wang, Y. F.; Wang, C. Y.; Zhang, T.; Zhang, P.; Sarvari, H.; Chen, Z.; Li, S. B. Enhanced performance of planar perovskite solar cells using low-temperature solution-processed Al-doped SnO2 as electron transport layers. Nanoscale Res. Lett.2017, 12, 238.

    Google Scholar 

  4. [4]

    Li, S. B.; Zhang, P.; Chen, H.; Wang, Y. F.; Liu, D. T.; Wu, J.; Sarvari, H.; Chen, Z. D. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J. Power Sources2017, 342, 990–997.

    CAS  Google Scholar 

  5. [5]

    Liu, D. T.; Li, S. B.; Zhang, P.; Wang, Y. F.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z. M.; Chen, Z. D. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy2017, 31, 462–468.

    CAS  Google Scholar 

  6. [6]

    Huang, J. S.; Yuan, Y. B.; Shao, Y. C.; Yan, Y. F. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater.2017, 2, 17042.

    CAS  Google Scholar 

  7. [7]

    Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature2013, 501, 395–398.

    CAS  Google Scholar 

  8. [8]

    Zhang, P.; Wu, J.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Chen, H.; Ji, L.; Liu, C. H.; Ahmad, W.; Chen, Z. D. et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater.2018, 30, 1703737.

    Google Scholar 

  9. [9]

    Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc.2012, 134, 17396–17399.

    CAS  Google Scholar 

  10. [10]

    Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Zhang, P.; Chen, H.; Ji, L.; Chen, L.; Chen, Z. D.; Wu, J. et al. Steering the crystallization of perovskites for high-performance solar cells in ambient air. J. Mater. Chem. A2019, 7, 12166–12175.

    CAS  Google Scholar 

  11. [11]

    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett.2015, 15, 3692–3696.

    CAS  Google Scholar 

  12. [12]

    Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys.2015, 11, 582–587.

    CAS  Google Scholar 

  13. [13]

    Torabi, S.; Jahani, F.; Van Severen, I.; Kanimozhi, C.; Patil, S.; Havenith, R. W. A.; Chiechi, R. C.; Lutsen, L.; Vanderzande, D. J. M.; Cleij, T. J. et al. Strategy for enhancing the dielectric constant of organic semiconductors without sacrificing charge carrier mobility and solubility. Adv. Funct. Mater.2015, 25, 150–157.

    CAS  Google Scholar 

  14. [14]

    Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett.2013, 13, 1764–1769.

    CAS  Google Scholar 

  15. [15]

    Kim, Y. J.; Dang, T. V.; Choi, H. J.; Park, B. J.; Eom, J. H.; Song, H. A.; Seol, D.; Kim, Y.; Shin, S. H.; Nah, J. et al. Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators. J. Mater. Chem. A2016, 4, 756–763.

    CAS  Google Scholar 

  16. [16]

    Huang, J. S.; Shao, Y. C.; Dong, Q. F. Organometal trihalide perovskite single crystals: A next wave of materials for 25% efficiency photovoltaics and applications beyond? J. Phys. Chem. Lett.2015, 6, 3218–3227.

    CAS  Google Scholar 

  17. [17]

    Parikh, K.; Cattanach, K.; Rao, R.; Suh, D. S.; Wu, A. M.; Manohar, S. K. Flexible vapour sensors using single walled carbon nanotubes. Sens. Actuators B Chem.2006, 113, 55–63.

    CAS  Google Scholar 

  18. [18]

    Roldán-Carmona, C.; Malinkiewicz, O.; Soriano, A.; Mínguez Espallargas, G.; Garcia, A.; Reinecke, P.; Kroyer, T.; Dar, M. I.; Nazeeruddin, M. K.; Bolink, H. J. Flexible high efficiency perovskite solar cells. Energy Environ. Sci.2014, 7, 994–997.

    Google Scholar 

  19. [19]

    Dong, Q. S.; Shi, Y. T.; Zhang, C. Y.; Wu, Y. K.; Wang, L. D. Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy2017, 40, 336–344.

    CAS  Google Scholar 

  20. [20]

    Lee, M.; Jo, Y.; Kim, D. S.; Jeong, H. Y.; Jun, Y. Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate. J. Mater. Chem. A2015, 3, 14592–14597.

    CAS  Google Scholar 

  21. [21]

    Dou, B. J.; Miller, E. M.; Christians, J. A.; Sanehira, E. M.; Klein, T. R.; Barnes, F. S.; Shaheen, S. E.; Garner, S. M.; Ghosh, S.; Mallick, A. et al. High-performance flexible perovskite solar cells on ultrathin glass: Implications of the TCO. J. Phys. Chem. Lett.2017, 8, 4960–4966.

    CAS  Google Scholar 

  22. [22]

    Cao, B. B.; Yang, L. K.; Jiang, S. S.; Lin, H.; Wang, N.; Li, X. Flexible quintuple cation perovskite solar cells with high efficiency. J. Mater. Chem. A2019, 7, 4960–4970.

    CAS  Google Scholar 

  23. [23]

    Li, X. M.; Yu, D. J.; Chen, J.; Wang, Y.; Cao, F.; Wei, Y.; Wu, Y.; Wang, L.; Zhu, Y.; Sun, Z. G. et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano2017, 11, 2015–2023.

    CAS  Google Scholar 

  24. [24]

    Cheng, L. P.; Huang, J. S.; Shen, Y.; Li, G. P.; Liu, X. K.; Li, W.; Wang, Y. H.; Li, Y. Q.; Jiang, Y.; Gao, F. et al. Efficient CsPbBr3 perovskite light-emitting diodes enabled by synergetic morphology control. Adv. Opt. Mater.2019, 7, 1801534.

    Google Scholar 

  25. [25]

    Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci.2013, 6, 1739–1743.

    CAS  Google Scholar 

  26. [26]

    Kim, B. J.; Kim, D. H.; Lee, Y. Y.; Shin, H. W.; Han, G. S.; Hong, J. S.; Mahmood, K.; Ahn, T. K.; Joo, Y. C.; Hong, K. S. et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ. Sci.2015, 8, 916–921.

    CAS  Google Scholar 

  27. [27]

    Wang, C. L.; Zhao, D. W.; Grice, C. R.; Liao, W. Q.; Yu, Y.; Cimaroli, A.; Shrestha, N.; Roland, P. J.; Chen, J.; Yu, Z. H. et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J. Mater. Chem. A2016, 4, 12080–12087.

    CAS  Google Scholar 

  28. [28]

    Yoon, J.; Sung, H.; Lee, G.; Cho, W.; Ahn, N.; Jung, H. S.; Choi, M. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ. Sci.2017, 10, 337–345.

    CAS  Google Scholar 

  29. [29]

    Sun, K.; Li, P. C.; Xia, Y. J.; Chang, J. J.; Ouyang, J. Y. Transparent conductive oxide-free perovskite solar cells with PEDOT: PSS as transparent electrode. ACS Appl. Mater. Interfaces2015, 7, 15314–15320.

    CAS  Google Scholar 

  30. [30]

    Kumar, M. H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P. P.; Mathews, N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun.2013, 49, 11089–11091.

    CAS  Google Scholar 

  31. [31]

    Liu, Y. S.; Hong, Z. R.; Chen, Q.; Chang, W.; Zhou, H. P.; Song, T. B.; Young, E.; Yang, Y. M.; You, J. B.; Li, G. et al. Integrated perovskite/bulk-heterojunction toward efficient solar cells. Nano Lett.2015, 15, 662–668.

    CAS  Google Scholar 

  32. [32]

    Bi, D. Q.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett.2013, 4, 1532–1536.

    CAS  Google Scholar 

  33. [33]

    You, J. B.; Hong, Z. R.; Yang, Y. M.; Chen, Q.; Cai, M.; Song, T. B.; Chen, C. C.; Lu, S. R.; Liu, Y. S.; Zhou, H. P. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano2014, 8, 1674–1680.

    CAS  Google Scholar 

  34. [34]

    Dkhissi, Y.; Huang, F. Z.; Rubanov, S.; Xiao, M. D.; Bach, U.; Spiccia, L.; Caruso, R. A.; Cheng, Y. B. Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J. Power Sources2015, 278, 325–331.

    CAS  Google Scholar 

  35. [35]

    Deng, X. Y.; Wilkes, G. C.; Chen, A. Z.; Prasad, N. S.; Gupta, M. C.; Choi, J. J. Room-temperature processing of TiOx electron transporting layer for perovskite solar cells. J. Phys. Chem. Lett.2017, 8, 3206–3210.

    CAS  Google Scholar 

  36. [36]

    Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon.2014, 8, 133–138.

    CAS  Google Scholar 

  37. [37]

    Zhou, H. W.; Shi, Y. T.; Wang, K.; Dong, Q. S.; Bai, X. G.; Xing, Y. J.; Du, Y.; Ma, T. L. Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. J. Phys. Chem. C2015, 119, 4600–4605.

    CAS  Google Scholar 

  38. [38]

    Mahmud, M. A.; Elumalai, N. K.; Upama, M. B.; Wang, D.; Chan, K. H.; Wright, M.; Xu, C.; Haque, F.; Uddin, A. Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Solar Energy Mater. Solar Cells2017, 159, 251–264.

    CAS  Google Scholar 

  39. [39]

    Li, S. B.; Zhang, P.; Wang, Y. F.; Sarvari, H.; Liu, D. T.; Wu, J.; Yang, Y. J.; Wang, Z. M.; Chen, Z. D. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res.2017, 10, 1092–1103.

    CAS  Google Scholar 

  40. [40]

    Zhang, P.; Wu, J.; Wang, Y. F.; Sarvari, H.; Liu, D. T.; Chen, Z. D.; Li, S. B. Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition. J. Mater. Chem. A2017, 5, 17368–17378.

    CAS  Google Scholar 

  41. [41]

    Dkhissi, Y.; Meyer, S.; Chen, D. H.; Weerasinghe, H. C.; Spiccia, L.; Cheng, Y. B.; Caruso, R. A. Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates. ChemSusChem2016, 9, 687–695.

    CAS  Google Scholar 

  42. [42]

    Wang, X. Y.; Li, Z.; Xu, W. J.; Kulkarni, S. A.; Batabyal, S. K.; Zhang, S.; Cao, A. Y.; Wong, L. H. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy2015, 11, 728–735.

    CAS  Google Scholar 

  43. [43]

    Di Giacomo, F.; Zardetto, V.; D’Epifanio, A.; Pescetelli, S.; Matteocci, F.; Razza, S.; Di Carlo, A.; Licoccia, S.; Kessels, W. M. M.; Creatore, M. et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater.2015, 5, 1401808.

    Google Scholar 

  44. [44]

    Zhou, P.; Li, W. N.; Li, T. H.; Bu, T. L.; Liu, X. P.; Li, J.; He, J.; Chen, R.; Li, K. P.; Zhao, J. et al. Ultrasonic spray-coating of largescale TiO2 compact layer for efficient flexible perovskite solar cells. Micromachines2017, 8, 55.

    Google Scholar 

  45. [45]

    Yang, D.; Yang, R. X.; Zhang, J.; Yang, Z.; Liu, S.; Li, C. High efficiency flexible perovskite solar cells using superior low temperature TiO2.Energy Environ. Sci.2015, 8, 3208–3214.

    CAS  Google Scholar 

  46. [46]

    Jiang, Q.; Zhang, L. Q.; Wang, H. L.; Yang, X. L.; Meng, J. H.; Liu, H.; Yin, Z. Y.; Wu, J. L.; Zhang, X. W.; You, J. B. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy2017, 2, 16177.

    CAS  Google Scholar 

  47. [47]

    Anaraki, E. H.; Kermanpur, A.; Mayer, M. T.; Steier, L.; Ahmed, T.; Turren-Cruz, S. H.; Seo, J.; Luo, J. S.; Zakeeruddin, S. M.; Tress, W. R. et al. Low-temperature Nb-Doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett.2018, 3, 773–778.

    Google Scholar 

  48. [48]

    Ke, W. J.; Fang, G. J.; Liu, Q.; Xiong, L. B.; Qin, P. L.; Tao, H.; Wang, J.; Lei, H. W.; Li, B. R.; Wan, J. W. et al. Low-temperature solutionprocessed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc.2015, 137, 6730–6733.

    CAS  Google Scholar 

  49. [49]

    Yang, G.; Chen, C.; Yao, F.; Chen, Z. L.; Zhang, Q.; Zheng, X. L.; Ma, J. J.; Lei, H. W.; Qin, P. L.; Xiong, L. B. et al. Effective Carrierconcentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells. Adv. Mater.2018, 30, 1706023.

    Google Scholar 

  50. [50]

    Wang, C. L.; Guan, L.; Zhao, D. W.; Yu, Y.; Grice, C. R.; Song, Z. N.; Awni, R. A.; Chen, J.; Wang, J. B.; Zhao, X. Z. et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett.2017, 2, 2118–2124.

    CAS  Google Scholar 

  51. [51]

    Park, M.; Kim, J. Y.; Son, H. J.; Lee, C. H.; Jang, S. S.; Ko, M. J. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy2016, 26, 208–215.

    CAS  Google Scholar 

  52. [52]

    Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci.2016, 9, 1989–1997.

    CAS  Google Scholar 

  53. [53]

    Ha, J.; Kim, H.; Lee, H.; Lim, K. G.; Lee, T. W.; Yoo, S. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Solar Energy Mater. Solar Cells2017, 161, 338–346.

    CAS  Google Scholar 

  54. [54]

    Feng, J. S.; Yang, Z.; Yang, D.; Ren, X. D.; Zhu, X. J.; Jin, Z. W.; Zi, W.; Wei, Q. B.; Liu, S. Z. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy2017, 36, 1–8.

    CAS  Google Scholar 

  55. [55]

    Shin, S. S.; Yang, W. S.; Noh, J. H.; Suk, J. H.; Jeon, N. J.; Park, J. H.; Kim, J. S.; Seong, W. M.; Seok, S. I. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun.2015, 6, 7410.

    CAS  Google Scholar 

  56. [56]

    Liu, X.; Chueh, C. C.; Zhu, Z. L.; Jo, S. B.; Sun, Y.; Jen, A. K. Y. Highly crystalline Zn2SnO4 nanoparticles as efficient electrontransporting layers toward stable inverted and flexible conventional perovskite solar cells. J. Mater. Chem. A2016, 4, 15294–15301.

    CAS  Google Scholar 

  57. [57]

    Wang, K.; Shi, Y. T.; Gao, L. G.; Chi, R. H.; Shi, K.; Guo, B. Y.; Zhao, L.; Ma, T. L. W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle. Nano Energy2017, 31, 424–431.

    CAS  Google Scholar 

  58. [58]

    Ryu, S.; Seo, J.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Seok, S. I. Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J. Mater. Chem. A2015, 3, 3271–3275.

    CAS  Google Scholar 

  59. [59]

    Feng, J. S.; Zhu, X. J.; Yang, Z.; Zhang, X. R.; Niu, J. Z.; Wang, Z. Y.; Zuo, S. N.; Priya, S.; Liu, S. Z.; Yang, D. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater.2018, 30, 1801418.

    Google Scholar 

  60. [60]

    Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun.2013, 4, 2761.

    Google Scholar 

  61. [61]

    Ou, X. L.; Xu, M.; Feng, J.; Sun, H. B. Flexible and efficient ITO-free semitransparent perovskite solar cells. Solar Energy Mater. Solar Cells2016, 157, 660–665.

    CAS  Google Scholar 

  62. [62]

    Hou, Y.; Zhang, H.; Chen, W.; Chen, S.; Quiroz, C. O. R.; Azimi, H.; Osvet, A.; Matt, G. J.; Zeira, E.; Seuring, J. et al. Inverted, environmentally stable perovskite solar cell with a novel low-cost and water-free PEDOT hole-extraction layer. Adv. Energy Mater.2015, 5, 1500543.

    Google Scholar 

  63. [63]

    Hou, F. H.; Su, Z. S.; Jin, F. M.; Yan, X. W.; Wang, L. D.; Zhao, H. F.; Zhu, J. Z.; Chu, B.; Li, W. L. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT: PSS hole transporting layer. Nanoscale2015, 7, 9427–9432.

    CAS  Google Scholar 

  64. [64]

    Zhang, Y.; Hu, X. T.; Chen, L.; Huang, Z. Q.; Fu, Q. X.; Liu, Y. W.; Zhang, L.; Chen, Y. W. Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61 BM planar heterojunction perovskite solar cells. Org. Electron.2016, 30, 281–288.

    Google Scholar 

  65. [65]

    Jo, J. W.; Seo, M. S.; Park, M.; Kim, J. Y.; Park, J. S.; Han, I. K.; Ahn, H.; Jung, J. W.; Sohn, B. H.; Ko, M. J. et al. Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material. Adv. Funct. Mater.2016, 26, 4464–4471.

    CAS  Google Scholar 

  66. [66]

    Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett.2013, 13, 3124–3128.

    CAS  Google Scholar 

  67. [67]

    Park, M.; Park, J. S.; Han, I. K.; Oh, J. Y. High-performance flexible and air-stable perovskite solar cells with a large active area based on poly(3-hexylthiophene) nanofibrils. J. Mater. Chem. A2016, 4, 11307–11316.

    CAS  Google Scholar 

  68. [68]

    Liu, Z. K.; You, P.; Xie, C.; Tang, G. Q.; Yan, F. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy2016, 28, 151–157.

    CAS  Google Scholar 

  69. [69]

    Bai, L. B.; Wang, Z.; Han, Y. M.; Zuo, Z. Y.; Liu, B.; Yu, M. N.; Zhang, H. J.; Lin, J. Y.; Xia, Y. D.; Yin, C. R. et al. Diarylfluorene-based nano-molecules as dopant-free hole-transporting materials without post-treatment process for flexible p-i-n type perovskite solar cells. Nano Energy2018, 46, 241–248.

    CAS  Google Scholar 

  70. [70]

    Wang, K. C.; Jeng, J. Y.; Shen, P. S.; Chang, Y. C.; Diau, E. W. G.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P. Y.; Chen, P. et al. P-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep.2014, 4, 4756.

    Google Scholar 

  71. [71]

    Wang, K. C.; Shen, P. S.; Li, M. H.; Chen, S.; Lin, M. W.; Chen, P.; Guo, T. F. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces2014, 6, 11851–11858.

    CAS  Google Scholar 

  72. [72]

    Yin, X. T.; Chen, P.; Que, M. D.; Xing, Y. L.; Que, W. X.; Niu, C. M.; Shao, J. Y. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano2016, 10, 3630–3636.

    CAS  Google Scholar 

  73. [73]

    Zhang, H.; Cheng, J. Q.; Lin, F.; He, H. X.; Mao, J.; Wong, K. S.; Jen, A. K. Y.; Choy, W. C. H. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano2016, 10, 1503–1511.

    CAS  Google Scholar 

  74. [74]

    Najafi, M.; Di Giacomo, F.; Zhang, D.; Shanmugam, S.; Senes, A.; Verhees, W.; Hadipour, A.; Galagan, Y.; Aernouts, T.; Veenstra, S. et al. Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small2018, 14, 1702775.

    Google Scholar 

  75. [75]

    Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science2016, 354, 206–209.

    CAS  Google Scholar 

  76. [76]

    Luo, D. Y.; Yang, W. Q.; Wang, Z. P.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. J. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science2018, 360, 1442–1446.

    CAS  Google Scholar 

  77. [77]

    Wolff, C. M.; Canil, L.; Rehermann, C.; Linh, N. N.; Zu, F. S.; Ralaiarisoa, M.; Caprioglio, P.; Fiedler, L.; Stolterfoht, M.; Kogikoski, S. Jr. et al. Perfluorinated Self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells. ACS Nano2020, 14, 1445–1456.

    CAS  Google Scholar 

  78. [78]

    Huang, Z. P.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U. Metalassisted chemical etching of silicon: A review. Adv. Mater.2011, 23, 285–308.

    CAS  Google Scholar 

  79. [79]

    Dou, L. T.; Yang, Y.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun.2014, 5, 5404.

    CAS  Google Scholar 

  80. [80]

    Zhang, T.; Wu, J.; Zhang, P.; Ahmad, W.; Wang, Y. F.; Alqahtani, M.; Chen, H.; Gao, C. M.; Chen, Z. D.; Wang, Z. M. et al. High speed and stable solution-processed triple cation perovskite photodetectors. Adv. Opt. Mater.2018, 6, 1701341.

    Google Scholar 

  81. [81]

    Zhang, T.; Wang, F.; Zhang, P.; Wang, Y. F.; Chen, H.; Li, J.; Wu, J.; Chen, L.; Chen, Z. D.; Li, S. Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale2019, 11, 2871–2877.

    CAS  Google Scholar 

  82. [82]

    Deng, W.; Huang, H. C.; Jin, H. M.; Li, W.; Chu, X.; Xiong, D.; Yan, W.; Chun, F. J.; Xie, M. L.; Luo, C. et al. All-sprayed-processable, large-area, and flexible perovskite/MXene-based photodetector arrays for photocommunication. Adv. Opt. Mater.2019, 7, 1801521.

    Google Scholar 

  83. [83]

    Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater.2014, 24, 7373–7380.

    CAS  Google Scholar 

  84. [84]

    Bao, C. X.; Zhu, W. D.; Yang, J.; Li, F. M.; Gu, S.; Wang, Y. R. Q.; Yu, T.; Zhu, J.; Zhou, Y.; Zou, Z. G. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl. Mater. Interfaces2016, 8, 23868–23875.

    CAS  Google Scholar 

  85. [85]

    Leung, S. F.; Ho, K. T.; Kung, P. K.; Hsiao, V. K. S.; Alshareef, H. N.; Wang, Z. L.; He, J. H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater.2018, 30, 1704611.

    Google Scholar 

  86. [86]

    Sun, H. X.; Lei, T. Y.; Tian, W.; Cao, F. R.; Xiong, J.; Li, L. Selfpowered, flexible, and solution-processable perovskite photodetector based on low-cost carbon cloth. Small2017, 13, 1701042.

    Google Scholar 

  87. [87]

    Fang, H. J.; Li, J. W.; Ding, J.; Sun, Y.; Li, Q.; Sun, J. L.; Wang, L. D.; Yan, Q. F. An origami perovskite photodetector with spatial recognition ability. ACS Appl. Mater. Interfaces2017, 9, 10921–10928.

    CAS  Google Scholar 

  88. [88]

    Tong, G. Q.; Li, H.; Li, D. T.; Zhu, Z. F.; Xu, E. Z.; Li, G. P.; Yu, L. W.; Xu, J.; Jiang, Y. Dual-phase CsPbBr3-CsPb2Br5 perovskite thin films via vapor deposition for high-performance rigid and flexible photodetectors. Small2018, 14, 1702523.

    Google Scholar 

  89. [89]

    Hu, W.; Huang, W.; Yang, S. Z.; Wang, X.; Jiang, Z. Y.; Zhu, X. L.; Zhou, H.; Liu, H. J.; Zhang, Q. L.; Zhuang, X. J. et al. Highperformance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Adv. Mater.2017, 29, 1703256.

    Google Scholar 

  90. [90]

    Liu, J. Y.; Xue, Y. Z.; Wang, Z. Y.; Xu, Z. Q.; Zheng, C. X.; Weber, B.; Song, J. C.; Wang, Y. S.; Lu, Y. R.; Zhang, Y. P. et al. Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano2016, 10, 3536–3542.

    CAS  Google Scholar 

  91. [91]

    Gao, L.; Zeng, K.; Guo, J. S.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y. S.; Song, H. S. et al. Passivated single-crystalline CH3NH3PbI3 Nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett.2016, 16, 7446–7454.

    CAS  Google Scholar 

  92. [92]

    Deng, W.; Huang, L.; Xu, X. Z.; Zhang, X. J.; Jin, X. C.; Lee, S. T.; Jie, J. S. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett.2017, 17, 2482–2489.

    CAS  Google Scholar 

  93. [93]

    Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science2012, 338, 643–647.

    CAS  Google Scholar 

  94. [94]

    Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano2015, 9, 4533–4542.

    CAS  Google Scholar 

  95. [95]

    Ning, Z. J.; Gong, X. W.; Comin, R.; Walters, G.; Fan, F. J.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E. H. Quantum-dot-in-perovskite solids. Nature2015, 523, 324–328.

    CAS  Google Scholar 

  96. [96]

    Zheng, Z.; Zhuge, F.; Wang, Y. G.; Zhang, J. B.; Gan, L.; Zhou, X.; Li, H. Q.; Zhai, T. Y. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv. Funct. Mater.2017, 27, 1703115.

    Google Scholar 

  97. [97]

    Li, D. Y.; Zhou, D. L.; Xu, W.; Chen, X.; Pan, G. C.; Zhou, X. Y.; Ding, N.; Song, H. W. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors. Adv. Funct. Mater.2018, 28, 1804429.

    Google Scholar 

  98. [98]

    Deng, H.; Yang, X. K.; Dong, D. D.; Li, B.; Yang, D.; Yuan, S. J.; Qiao, K. K.; Cheng, Y. B.; Tang, J.; Song, H. S. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett.2015, 15, 7963–7969.

    CAS  Google Scholar 

  99. [99]

    Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S. T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater.2016, 28, 2201–2208.

    CAS  Google Scholar 

  100. [100]

    Li, J. B.; Liu, Y. C.; Ren, X. D.; Yang, Z.; Li, R. P.; Su, H.; Yang, X. M.; Xu, J. Z.; Xu, H.; Hu, J. Y. et al. Solution coating of superior large-area flexible perovskite thin films with controlled crystal packing. Adv. Opt. Mater.2017, 5, 1700102.

    Google Scholar 

  101. [101]

    Zhu, P. C.; Gu, S.; Shen, X. P.; Xu, N.; Tan, Y. L.; Zhuang, S. D.; Deng, Y.; Lu, Z. D.; Wang, Z. L.; Zhu, J. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett.2016, 16, 871–876.

    CAS  Google Scholar 

  102. [102]

    Zhou, Y.; Luo, J. J.; Zhao, Y.; Ge, C.; Wang, C.; Gao, L.; Zhang, C.; Hu, M. C.; Niu, G. D.; Tang, J. Flexible linearly polarized photodetectors based on all-inorganic perovskite CsPbI3 nanowires. Adv. Opt. Mater.2018, 6, 1800679.

    Google Scholar 

  103. [103]

    Asuo, I. M.; Fourmont, P.; Ka, I.; Gedamu, D.; Bouzidi, S.; Pignolet, A.; Nechache, R.; Cloutier, S. G. Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small2019, 15, 1804150.

    Google Scholar 

  104. [104]

    Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater.2016, 28, 4861–4869.

    CAS  Google Scholar 

  105. [105]

    Wang, W. H.; Ma, Y. R.; Qi, L. M. High-performance photodetectors based on organometal halide perovskite nanonets. Adv. Funct. Mater.2017, 27, 1603653.

    Google Scholar 

  106. [106]

    Yang, Z.; Dou, J. J.; Wang, M. Q.; Li, J. J.; Huang, J.; Shao, J. Y. Flexible all-inorganic photoconductor detectors based on perovskite/ hole-conducting layer heterostructures. J. Mater. Chem. C2018, 6, 6739–6746.

    CAS  Google Scholar 

  107. [107]

    Zheng, W.; Lin, R. C.; Zhang, Z. J.; Liao, Q. X.; Liu, J. J.; Huang, F. An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic-inorganic perovskite nanoflake. Nanoscale2017, 9, 12718–12726.

    CAS  Google Scholar 

  108. [108]

    Cao, F.; Yu, D. J.; Li, X. M.; Zhu, Y.; Sun, Z. G.; Shen, Y. L.; Wu, Y.; Wei, Y.; Zeng, H. B. Highly stable and flexible photodetector arrays based on low dimensional CsPbBr3 microcrystals and on-paper pencil-drawn electrodes. J. Mater. Chem. C2017, 5, 7441–7445.

    CAS  Google Scholar 

  109. [109]

    Luo, X.; Zhao, F. Y.; Du, L. L.; Lv, W. L.; Xu, K.; Peng, Y. Q.; Wang, Y.; Lu, F. P. Ultrasensitive flexible broadband photodetectors achieving pA scale dark current. npj Flex. Electron.2017, 1, 6.

    Google Scholar 

  110. [110]

    Li, J. B.; Shen, Y. L.; Liu, Y. C.; Shi, F.; Ren, X. D.; Niu, T. Q.; Zhao, K.; Liu, S. F. Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite. ACS Appl. Mater. Interfaces2017, 9, 19176–19183.

    CAS  Google Scholar 

  111. [111]

    Dang, V. Q.; Han, G. S.; Trung, T. Q.; Duy, L. T.; Jin, Y. U.; Hwang, B. U.; Jung, H. S.; Lee, N. E. Methylammonium lead iodide perovskite-graphene hybrid channels in flexible broadband phototransistors. Carbon2016, 105, 353–361.

    CAS  Google Scholar 

  112. [112]

    Liu, H.; Zhang, X. W.; Zhang, L. Q.; Yin, Z. G.; Wang, D. G.; Meng, J. H.; Jiang, Q.; Wang, Y.; You, J. B. A high-performance photodetector based on an inorganic perovskite–ZnO heterostructure. J. Mater. Chem. C2017, 5, 6115–6122.

    CAS  Google Scholar 

  113. [113]

    Gao, T.; Zhang, Q.; Chen, J. N.; Xiong, X.; Zhai, T. Y. Performanceenhancing broadband and flexible photodetectors based on Perovskite/ZnO-nanowire hybrid structures. Adv. Opt. Mater.2017, 5, 1700206.

    Google Scholar 

  114. [114]

    Chen, S.; Teng, C. J.; Zhang, M.; Li, Y. R.; Xie, D.; Shi, G. Q. A flexible UV-Vis-NIR photodetector based on a perovskite/ conjugated-polymer composite. Adv. Mater.2016, 28, 5969–5974.

    CAS  Google Scholar 

  115. [115]

    Teng, C. J.; Xie, D.; Sun, M. X.; Chen, S.; Yang, P.; Sun, Y. L. Organic dye-sensitized CH3NH3PbI3 hybrid flexible photodetector with bulk heterojunction architectures. ACS Appl. Mater. Interfaces2016, 8, 31289–31294.

    CAS  Google Scholar 

  116. [116]

    Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Lightemitting diodes based on conjugated polymers. Nature1990, 347, 539–541.

    CAS  Google Scholar 

  117. [117]

    Miller, O. D.; Yablonovitch, E.; Kurtz, S. R. Strong internal and external luminescence as solar cells approach the shockley–queisser limit. IEEE J. Photovolt.2012, 2, 303–311.

    Google Scholar 

  118. [118]

    Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4.Appl. Phys. Lett.1994, 65, 676–678.

    CAS  Google Scholar 

  119. [119]

    Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol.2014, 9, 687–692.

    CAS  Google Scholar 

  120. [120]

    Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater.2015, 27, 1248–1254.

    CAS  Google Scholar 

  121. [121]

    Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol.2016, 11, 872–877.

    CAS  Google Scholar 

  122. [122]

    Seo, H. K.; Kim, H.; Lee, J.; Park, M. H.; Jeong, S. H.; Kim, Y. H.; Kwon, S. J.; Han, T. H.; Yoo, S.; Lee, T. W. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv. Mater.2017, 29, 1605587.

    Google Scholar 

  123. [123]

    Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite lightemitting diodes. Science2015, 350, 1222–1225.

    CAS  Google Scholar 

  124. [124]

    Chang, X. W.; Li, W. P.; Zhu, L. Q.; Liu, H. C.; Geng, H. F.; Xiang, S. S.; Liu, J. M.; Chen, H. N. Carbon-based CsPbBr3 perovskite solar cells: All-ambient processes and high thermal stability. ACS Appl. Mater. Interfaces2016, 8, 33649–33655.

    CAS  Google Scholar 

  125. [125]

    Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett.2015, 6, 4360–4364.

    CAS  Google Scholar 

  126. [126]

    Zhao, L. F.; Rolston, N.; Lee, K. M.; Zhao, X. H.; Reyes-Martinez, M. A.; Tran, N. L.; Yeh, Y. W.; Yao, N.; Scholes, G. D.; Loo, Y. L. et al. Influence of bulky organo-ammonium halide additive choice on the flexibility and efficiency of perovskite light-emitting devices. Adv. Funct. Mater.2018, 28, 1802060.

    Google Scholar 

  127. [127]

    Jung, D. H.; Park, J. H.; Lee, H. E.; Byun, J.; Im, T. H.; Lee, G. Y.; Seok, J. Y.; Yun, T.; Lee, K. J.; Kim, S. O. Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy2019, 61, 236–244.

    CAS  Google Scholar 

  128. [128]

    Li, J. Q.; Bade, S. G. R.; Shan, X.; Yu, Z. B. Single-layer lightemitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv. Mater.2015, 27, 5196–5202.

    CAS  Google Scholar 

  129. [129]

    Bade, S. G. R.; Li, J. Q.; Shan, X.; Ling, Y. C.; Tian, Y.; Dilbeck, T.; Besara, T.; Geske, T.; Gao, H. W.; Ma, B. W. et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano2016, 10, 1795–1801.

    CAS  Google Scholar 

  130. [130]

    Bade, S. G. R.; Shan, X.; Hoang, P. T.; Li, J. Q.; Geske, T.; Cai, L.; Pei, Q. B.; Wang, C.; Yu, Z. B. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv. Mater.2017, 29, 1607053.

    Google Scholar 

  131. [131]

    Jiang, D. H.; Liao, Y. C.; Cho, C. J.; Veeramuthu, L.; Liang, F. C.; Wang, T. C.; Chueh, C. C.; Satoh, T.; Tung, S. H.; Kuo, C. C. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS Appl. Mater. Interfaces2020, 12, 14408–14415.

    CAS  Google Scholar 

  132. [132]

    Lee, S. Y.; Nam, Y. S.; Yu, J. C.; Lee, S.; Jung, E. D.; Kim, S. H.; Lee, S.; Kim, J. Y.; Song, M. H. Highly efficient flexible perovskite light-emitting diodes using the modified PEDOT: PSS hole transport layer and polymer–silver nanowire composite electrode. ACS Appl. Mater. Interfaces2019, 11, 39274–39282.

    CAS  Google Scholar 

  133. [133]

    Jeong, S. H.; Kim, H.; Park, M. H.; Lee, Y.; Li, N.; Seo, H. K.; Han, T. H.; Ahn, S.; Heo, J. M.; Kim, K. S. et al. Ideal conducting polymer anode for perovskite light-emitting diodes by molecular interaction decoupling. Nano Energy2019, 60, 324–331.

    CAS  Google Scholar 

  134. [134]

    Xia, Y. J.; Sun, K.; Chang, J. J.; Ouyang, J. Y. Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. J. Mater. Chem. A2015, 3, 15897–15904.

    CAS  Google Scholar 

  135. [135]

    Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater.2015, 27, 7162–7167.

    CAS  Google Scholar 

  136. [136]

    Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc.2018, 140, 562–565.

    CAS  Google Scholar 

  137. [137]

    Zhao, F. C.; Chen, D.; Chang, S.; Huang, H. L.; Tong, K.; Xiao, C. T.; Chou, S. Y.; Zhong, H. Z.; Pei, Q. B. Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire–polymer composite electrode. J. Mater. Chem. C2017, 5, 531–538.

    CAS  Google Scholar 

  138. [138]

    Xing, J.; Yan, F.; Zhao, Y. W.; Chen, S.; Yu, H. K.; Zhang, Q.; Zeng, R. G.; Demir, H. V.; Sun, X. W.; Huan, A. et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano2016, 10, 6623–6630.

    CAS  Google Scholar 

  139. [139]

    Jin, X. C.; Zhang, X. J.; Fang, H.; Deng, W.; Xu, X. Z.; Jie, J. S.; Zhang, X. H. Facile assembly of high-quality organic-inorganic hybrid perovskite quantum dot thin films for bright light-emitting diodes. Adv. Funct. Mater.2018, 28, 1705189.

    Google Scholar 

  140. [140]

    Li, Y. F.; Chou, S. Y.; Huang, P.; Xiao, C.; Liu, X.; Xie, Y.; Zhao, F.; Huang, Y.; Feng, J.; Zhong, H. et al. Stretchable organometal-halideperovskite quantum-dot light-emitting diodes. Adv. Mater.2019, 31, 1807516.

    Google Scholar 

  141. [141]

    Yao, E. P.; Yang, Z. L.; Meng, L.; Sun, P. Y.; Dong, S. Q.; Yang, Y.; Yang, Y. High-brightness blue and white LEDs based on Inorganic perovskite nanocrystals and their composites. Adv. Mater.2017, 29, 1606859.

    Google Scholar 

  142. [142]

    Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc.2017, 139, 6566–6569.

    CAS  Google Scholar 

  143. [143]

    Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; Ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y. et al. Colloidal CsPbX3 (X=Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett.2018, 3, 641–646.

    CAS  Google Scholar 

  144. [144]

    Diroll, B. T.; Zhou, H.; Schaller, R. D. Low-temperature absorption, photoluminescence, and lifetime of CsPbX3 (X=Cl, Br, I) nanocrystals. Adv. Funct. Mater.2018, 28, 1800945.

    Google Scholar 

  145. [145]

    Lu, M.; Wu, H.; Zhang, X. Y.; Wang, H.; Hu, Y.; Colvin, V. L.; Zhang, Y.; Yu, W. W. Highly flexible CsPbI3 perovskite nanocrystal lightemitting diodes. ChemNanoMat2019, 5, 313–317.

    CAS  Google Scholar 

  146. [146]

    Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X. W.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H. Efficient luminescence from perovskite quantum dot solids. ACS Appl. Mater. Interfaces2015, 7, 25007–25013.

    CAS  Google Scholar 

  147. [147]

    Quan, L. N.; Quintero-Bermudez, R.; Voznyy, O.; Walters, G.; Jain, A.; Fan, J. Z.; Zheng, X. L.; Yang, Z. Y.; Sargent, E. H. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv. Mater.2017, 29, 1605945.

    Google Scholar 

  148. [148]

    Han, W. D.; Cui, F. H.; Si, Y.; Mao, X.; Ding, B.; Kim, H. Selfassembly of perovskite crystals anchored Al2O3-La2O3 nanofibrous membranes with robust flexibility and luminescence. Small2018, 14, 1801963.

    Google Scholar 

  149. [149]

    Tan, Y. S.; Li, R. Y.; Xu, H.; Qin, Y. S.; Song, T.; Sun, B. Q. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater.2019, 29, 1900730.

    Google Scholar 

  150. [150]

    Tong, Y.; Yao, E. P.; Manzi, A.; Bladt, E.; Wang, K.; Döblinger, M.; Bals, S.; Müller-Buschbaum, P.; Urban, A. S.; Polavarapu, L. et al. Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: Toward filling the green gap. Adv. Mater.2018, 30, 1801117.

    Google Scholar 

  151. [151]

    Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D. T. L.; Buonsanti, R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem., Int. Ed.2017, 56, 10696–10701.

    CAS  Google Scholar 

  152. [152]

    Raja, S. N.; Bekenstein, Y.; Koc, M. A.; Fischer, S.; Zhang, D. D.; Lin, L. W.; Ritchie, R. O.; Yang, P. D.; Alivisatos, A. P. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces2016, 8, 35523–35533.

    CAS  Google Scholar 

  153. [153]

    Li, Y.; Lv, Y.; Guo, Z. Q.; Dong, L. B.; Zheng, J. H.; Chai, C. F.; Chen, N.; Lu, Y. J.; Chen, C. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl. Mater. Interfaces2018, 10, 15888–15894.

    CAS  Google Scholar 

  154. [154]

    Lin, C. C.; Jiang, D. H.; Kuo, C. C.; Cho, C. J.; Tsai, Y. H.; Satoh, T.; Su, C. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces2018, 10, 2210–2215.

    CAS  Google Scholar 

  155. [155]

    Wang, H.; Lin, H. C.; Piao, X. Q.; Tian, P.; Fang, M. J.; An, X. E.; Luo, C. H.; Qi, R. J.; Chen, Y.; Peng, H. Organometal halide perovskite nanocrystals embedded in silicone resins with bright luminescence and ultrastability. J. Mater. Chem. C2017, 5, 12044–12049.

    CAS  Google Scholar 

  156. [156]

    Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater.2016, 28, 9163–9168.

    CAS  Google Scholar 

  157. [157]

    Rubino, A.; Anaya, M.; Galisteo-Lopez, J. F.; Rojas, T. C.; Calvo, M. E.; Miguez, H. Highly efficient and environmentally stable flexible color converters based on confined CH3NH3PbBr3 nanocrystals. ACS Appl. Mater. Interfaces2018, 10, 38334–38340.

    CAS  Google Scholar 

  158. [158]

    Zhong, M. Y.; Liang, Y. Q.; Zhang, J. Q.; Wei, Z. X.; Li, Q.; Xu, D. S. Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2 layer as the electron transport layer. J. Mater. Chem. A2019, 7, 6659–6664.

    CAS  Google Scholar 

  159. [159]

    Kumar, S.; Jagielski, J.; Kallikounis, N.; Kim, Y. H.; Wolf, C.; Jenny, F.; Tian, T.; Hofer, C. J.; Chiu, Y. C.; Stark, W. J. et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett.2017, 17, 5277–5284.

    CAS  Google Scholar 

  160. [160]

    Sun, H. X.; Tian, W.; Cao, F. R.; Xiong, J.; Li, L. Ultrahighperformance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv. Mater.2018, 30, 1706986.

    Google Scholar 

  161. [161]

    Rajagopal, A.; Yao, K.; Jen, A. K. Y. Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering. Adv. Mater.2018, 30, 1800455.

    Google Scholar 

  162. [162]

    Wang, P.; Wu, Y. H.; Cai, B.; Ma, Q. S.; Zheng, X. J.; Zhang, W. H. Solution-processable perovskite solar cells toward commercialization: Progress and challenges. Adv. Funct. Mater.2019, 29, 1807661.

    CAS  Google Scholar 

  163. [163]

    Wang, K.; Jin, Z. W.; Liang, L.; Bian, H.; Bai, D. L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Z. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun.2018, 9, 4544.

    Google Scholar 

  164. [164]

    Wang, Y.; Zhang, T. Y.; Kan, M.; Zhao, Y. X. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc.2018, 140, 12345–12348.

    CAS  Google Scholar 

  165. [165]

    Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T. Y.; Kan, M.; Li, Y. W.; Zhang, L. J.; Wang, X. T.; Yang, Y. G.; Gao, X. Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science2019, 365, 591–595.

    CAS  Google Scholar 

  166. [166]

    Wang, Y.; Liu, X. M.; Zhang, T. Y.; Wang, X. T.; Kan, M.; Shi, J. L.; Zhao, Y. X. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: Additive or dopant? Angew. Chem., Int. Ed.2019, 58, 16691–16696.

    CAS  Google Scholar 

  167. [167]

    Liao, J. F.; Rao, H. S.; Chen, B. X.; Kuang, D. B.; Su, C. Y. Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells. J. Mater. Chem. A2017, 5, 2066–2072.

    CAS  Google Scholar 

  168. [168]

    Ma, Q. S.; Huang, S. J.; Chen, S.; Zhang, M.; Lau, C. F. J.; Lockrey, M. N.; Mulmudi, H. K.; Shan, Y. C.; Yao, J. Z.; Zheng, J. H. et al. The effect of stoichiometry on the stability of inorganic cesium lead mixed-halide perovskites solar cells. J. Phys. Chem. C2017, 121, 19642–19649.

    CAS  Google Scholar 

  169. [169]

    Mariotti, S.; Hutter, O. S.; Phillips, L. J.; Yates, P. J.; Kundu, B.; Durose, K. Stability and performance of CsPbI2Br thin films and solar cell devices. ACS Appl. Mater. Interfaces2018, 10, 3750–3760.

    CAS  Google Scholar 

  170. [170]

    Liu, C.; Wu, M.; Wu, Y. C.; Wang, D. F.; Zhang, T. J. Efficient all-inorganic CsPbI2Br perovskite solar cell with carbon electrode by revealing crystallization kinetics and improving crystal quality. J. Power Sources2020, 447, 227389.

    CAS  Google Scholar 

  171. [171]

    Huynh, T. P.; Sonar, P.; Haick, H. Advanced materials for use in soft self-healing devices. Adv. Mater.2017, 29, 1604973.

    Google Scholar 

  172. [172]

    Zhao, Y. C.; Wei, J.; Li, H.; Yan, Y.; Zhou, W. K.; Yu, D. P.; Zhao, Q. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun.2016, 7, 10228.

    CAS  Google Scholar 

  173. [173]

    Ceratti, D. R.; Rakita, Y.; Cremonesi, L.; Tenne, R.; Kalchenko, V.; Elbaum, M.; Oron, D.; Potenza, M. A. C.; Hodes, G.; Cahen, D. Self-healing inside APbBr3 halide perovskite crystals. Adv. Mater.2018, 30, 1706273.

    Google Scholar 

  174. [174]

    Chilvery, A. K.; Batra, A. K.; Yang, B.; Xiao, K.; Guggilla, P.; Aggarwal, M. D.; Surabhi, R.; Lal, R. B.; Currie, J. R.; Penn, B. G. Perovskites: Transforming photovoltaics, a mini-review. J. Photon. Energy2015, 5, 057402.

    Google Scholar 

  175. [175]

    Bu, T. L.; Shi, S. W.; Li, J.; Liu, Y. F.; Shi, J. L.; Chen, L.; Liu, X. P.; Qiu, J. H.; Ku, Z. L.; Peng, Y. et al. Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules. ACS Appl. Mater. Interfaces2018, 10, 14922–14929.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61874150 and 61974014), the Sichuan Key Project for Applied Fundamental Research (No. 20YYJC4341) and the Key Laboratory Foundation of Chinese Academy of Sciences (No. 2019LBC). This work was also partially supported by UESTC Shared Research Facilities of Electromagnetic Wave and Matter Interaction (No. Y0301901290100201).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jiang Wu or Shibin Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, H., Wu, J. et al. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 13, 1997–2018 (2020). https://doi.org/10.1007/s12274-020-2805-x

Download citation

Keywords

  • perovskite
  • optoelectronic devices
  • flexibility
  • high-performance