Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine

Abstract

Despite improvements in our understanding of the biology behind triple-negative breast cancer (TNBC), it remains a devastating disease due to lack of an effective targeted therapy. Inhibiting Wnt signaling is a promising strategy to combat TNBC because Wnt signaling drives TNBC progression, chemoresistance, and stemness. However, Wnt inhibition can lead to upregulation of autophagy, which confers therapeutic resistance. This provides an opportunity for combination therapy, as autophagy inhibitors applied concurrently with Wnt inhibitors could increase treatment efficacy. Here, we applied the autophagy inhibitor chloroquine (CQ) to TNBC cells in combination with Frizzled7 antibody-coated nanoshells (FZD7-NS) that suppress Wnt signaling by blocking Wnt ligand/FZD7 receptor interactions, and evaluated this dual treatment in vitro. We found that FZD7-NS can inhibit Axin2 and CyclinD1, two targets of canonical Wnt signaling, and increase the expression of LC3, an autophagy marker. When FZD7-NS and CQ are applied together, they reduce the expression of several stemness genes in TNBC cells, leading to inhibition of TNBC cell migration and self-renewal. Notably, co-delivery of FZD7-NS and CQ is more effective than either therapy alone or the combination of CQ with free FZD7 antibodies. This demonstrates that the nanocarrier design is important to its therapeutic utility. Overall, these findings indicate that combined regulation of Wnt signaling and autophagy by FZD7-NS and CQ is a promising strategy to combat TNBC.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Anders, C. K.; Carey, L. A. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin. Breast Cancer2009, 9, S73–S81.

    CAS  Google Scholar 

  2. [2]

    Dent, R.; Hanna, W. M.; Trudeau, M.; Rawlinson, E.; Sun, P.; Narod, S. A. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res. Treat.2009, 115, 423–428.

    Google Scholar 

  3. [3]

    Pohl, S. G.; Brook, N.; Agostino, M.; Arfuso, F.; Kumar, A. P.; Dharmarajan, A. Wnt signaling in triple-negative breast cancer. Oncogenesis2017, 6, e310.

    CAS  Google Scholar 

  4. [4]

    Dey, N.; Barwick, B. G.; Moreno, C. S.; Ordanic-Kodani, M.; Chen, Z. J.; Oprea-Ilies, G.; Tang, W. N.; Catzavelos, C.; Kerstann, K. F.; Sledge, G. W. et al. Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer2013, 13, 537.

    Google Scholar 

  5. [5]

    King, T. D.; Suto, M. J.; Li, Y. H. The Wnt/β-catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. J. Cell. Biochem.2012, 113, 13–18.

    CAS  Google Scholar 

  6. [6]

    Yang, L.; Wu, X.; Wang, Y.; Zhang, K.; Wu, J.; Yuan, Y. C.; Deng, X.; Chen, L.; Kim, C. C. H.; Lau, S. et al. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene2011, 30, 4437–4446.

    CAS  Google Scholar 

  7. [7]

    Riley, R. S.; Day, E. S. Frizzled7 antibody-functionalized nanoshells enable multivalent binding for Wnt signaling inhibition in triple negative breast cancer cells. Small2017, 13, 1700544.

    Google Scholar 

  8. [8]

    Ma, B.; Hottiger, M. O. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front. Immunol.2016, 7, 378.

    Google Scholar 

  9. [9]

    Morris, S. A. L.; Huang, S. Y. Crosstalk of the Wnt/β-catenin pathway with other pathways in cancer cells. Genes Dis.2016, 3, 41–47.

    CAS  Google Scholar 

  10. [10]

    Jeong, W. J.; Ro, E. J.; Choi, K. Y. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. NPJ Precis. Oncol.2018, 2, 5.

    Google Scholar 

  11. [11]

    Nàger, M.; Sallán, M. C.; Visa, A.; Pushparaj, C.; Santacana, M.; Macià, A.; Yeramian, A.; Cantí, C.; Herreros, J. Inhibition of Wnt-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy2018, 14, 619–636.

    Google Scholar 

  12. [12]

    Petherick, K. J.; Williams, A. C.; Lane, J. D.; Ordóñez-Morán, P.; Huelsken, J.; Collard, T. J.; Smartt, H. J. M.; Batson, J.; Malik, K.; Paraskeva, C. et al. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J.2013, 32, 1903–1916.

    CAS  Google Scholar 

  13. [13]

    Turcios, L.; Chacon, E.; Garcia, C.; Eman, P.; Cornea, V.; Jiang, J. Y.; Spear, B.; Liu, C. M.; Watt, D. S.; Marti, F. et al. Autophagic flux modulation by Wnt/β-catenin pathway inhibition in hepatocellular carcinoma. PLoS One2019, 14, e0212538.

    CAS  Google Scholar 

  14. [14]

    Fu, Y. J.; Chang, H.; Peng, X. L.; Bai, Q.; Yi, L.; Zhou, Y.; Zhu, J. D.; Mi, M. T. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One2014, 9, e102535.

    Google Scholar 

  15. [15]

    Su, N.; Wang, P. P.; Li, Y. Role of Wnt/β-catenin pathway in inducing autophagy and apoptosis in multiple myeloma cells. Oncol. Lett.2016, 12, 4623–4629.

    CAS  Google Scholar 

  16. [16]

    Ávalos, Y.; Canales, J.; Bravo-Sagua, R.; Criollo, A.; Lavandero, S; Quest, A. F. G. Tumor suppression and promotion by autophagy. BioMed Res. Int.2014, 2014, 603980.

    Google Scholar 

  17. [17]

    Chittaranjan, S.; Bortnik, S.; Dragowska, W. H.; Xu, J.; Abeysundara, N.; Leung, A.; Go, N. E.; DeVorkin, L.; Weppler, S. A.; Gelmon, K. et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin. Cancer Res.2014, 20, 3159–3173.

    CAS  Google Scholar 

  18. [18]

    Rubinsztein, D. C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov.2012, 11, 709–730.

    CAS  Google Scholar 

  19. [19]

    Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett.1998, 288, 243–247.

    CAS  Google Scholar 

  20. [20]

    Melamed, J. R.; Ioele, S. A.; Hannum, A. J.; Ullman, V. M.; Day, E. S. Polyethylenimine-spherical nucleic acid nanoparticles against GLI1 reduce the chemoresistance and stemness of glioblastoma cells. Mol. Pharm.2018, 15, 5135–5145.

    CAS  Google Scholar 

  21. [21]

    Manders, E. M. M.; Verbeek, F. J.; Aten, J. A. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc.1993, 169, 375–382.

    Google Scholar 

  22. [22]

    Stauffer, W.; Sheng, H. J.; Lim, H. N. EzColocalization: An ImageJ plugin for visualizing and measuring colocalization in cells and organisms. Sci. Rep.2018, 8, 15764.

    Google Scholar 

  23. [23]

    Wang, J. X.; Potocny, A. M.; Rosenthal, J.; Day, E. S. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega2020, 5, 926–940.

    CAS  Google Scholar 

  24. [24]

    Riley, R. S.; Melamed, J. R.; Day, E. S. Enzyme-linked immunosorbent assay to quantify targeting molecules on nanoparticles. In Targeted Drug Delivery: Methods and Protocols. Sirianni, R. W.; Behkam, B., Eds.; Humana Press: New York, NY, 2018; pp 145–157.

    Google Scholar 

  25. [25]

    de Puig, H.; Bosch, I.; Carré-Camps, M.; Hamad-Schifferli, K. Effect of the protein corona on antibody-antigen binding in nanoparticle sandwich immunoassays. Bioconjugate Chem.2017, 28, 230–238.

    CAS  Google Scholar 

  26. [26]

    Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Release2010, 145, 182–195.

    CAS  Google Scholar 

  27. [27]

    Oh, E.; Delehanty, J. B.; Sapsford, K. E.; Susumu, K.; Goswami, R.; Blanco-Canosa, J. B.; Dawson, P. E.; Granek, J.; Shoff, M.; Zhang, Q. et al. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano2011, 5, 6434–6448.

    CAS  Google Scholar 

  28. [28]

    Chithrani, D. B. Intracellular uptake, transport, and processing of gold nanostructures. Mol. Membr. Biol.2010, 27, 299–311.

    CAS  Google Scholar 

  29. [29]

    Nativo, P.; Prior, I. A.; Brust, M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano2008, 2, 1639–1644.

    CAS  Google Scholar 

  30. [30]

    Wang, L. M.; Liu, Y.; Li, W.; Jiang, X. M.; Ji, Y. L.; Wu, X. C.; Xu, L. G.; Qiu, Y.; Zhao, K.; Wei, T. T. et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Lett.2011, 11, 772–780.

    CAS  Google Scholar 

  31. [31]

    Frantz, M. C.; Wipf, P. Mitochondria as a target in treatment. Environ. Mol. Mutagen.2010, 51, 462–475.

    CAS  Google Scholar 

  32. [32]

    Weinberg, S. E.; Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol.2015, 11, 9–15.

    CAS  Google Scholar 

  33. [33]

    Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov.2010, 9, 447–464.

    CAS  Google Scholar 

  34. [34]

    Murphy, M. P.; Hartley, R. C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov.2018, 17, 865–886.

    CAS  Google Scholar 

  35. [35]

    Pathak, R. K.; Kolishetti, N.; Dhar, S. Targeted nanoparticles in mitochondrial medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2015, 7, 315–329.

    CAS  Google Scholar 

  36. [36]

    Marrache, S.; Pathak, R. K.; Dhar, S. Formulation and optimization of mitochondria-targeted polymeric nanoparticles. In Mitochondrial Medicine: Volume II, Manipulating Mitochondrial Function. Weissig, V.; Edeas, M., Eds.; Humana Press: New York, 2015; pp 103–112.

    Google Scholar 

  37. [37]

    Picard, M.; Wallace, D. C.; Burelle, Y. The rise of mitochondria in medicine. Mitochondrion2016, 30, 105–116.

    CAS  Google Scholar 

  38. [38]

    Gao, C.; Cao, W. P.; Bao, L.; Zuo, W.; Xie, G. M.; Cai, T. T.; Fu, W.; Zhang, J.; Wu, W.; Zhang, X. et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat. Cell Biol.2010, 12, 781–790.

    CAS  Google Scholar 

  39. [39]

    Bilir, B.; Kucuk, O.; Moreno, C. S. Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J. Transl. Med.2013, 11, 280.

    Google Scholar 

  40. [40]

    Liu, C. G.; Sun, L. S.; Yang, J.; Liu, T.; Yang, Y. L.; Kim, S. M.; Ou, X. Y.; Wang, Y. N.; Sun, L.; Zaidi, M. et al. FSIP1 regulates autophagy in breast cancer. Proc. Natl. Acad. Sci. USA2018, 115, 13075–13080.

    CAS  Google Scholar 

  41. [41]

    Reya, T.; Morrison, S. J.; Clarke, M. F.; Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature2001, 414, 105–111.

    CAS  Google Scholar 

  42. [42]

    Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature2005, 434, 843–850.

    CAS  Google Scholar 

  43. [43]

    Pan, H. Z.; Cai, N.; Li, M.; Liu, G. H.; Izpisua Belmonte, J. C. Autophagic control of cell ‘stemness’. EMBO Mol. Med.2013, 5, 327–331.

    CAS  Google Scholar 

  44. [44]

    García-Prat, L.; Martínez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodríguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A. L. et al. Autophagy maintains stemness by preventing senescence. Nature2016, 529, 37–42.

    Google Scholar 

  45. [45]

    Desai, A.; Yan, Y.; Gerson, S. L. Concise reviews: Cancer stem cell targeted therapies: Toward clinical success. Stem Cells Transl. Med.2019, 8, 75–81.

    Google Scholar 

  46. [46]

    Saygin, C.; Matei, D.; Majeti, R.; Reizes, O.; Lathia, J. D. Targeting cancer stemness in the clinic: From hype to hope. Cell Stem Cell2019, 24, 25–40.

    CAS  Google Scholar 

  47. [47]

    Yu, F.; Li, J.; Chen, H.; Fu, J.; Ray, S.; Huang, S.; Zheng, H.; Ai, W. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene2011, 30, 2161–2172.

    CAS  Google Scholar 

  48. [48]

    Nagata, T.; Shimada, Y.; Sekine, S.; Moriyama, M.; Hashimoto, I.; Matsui, K.; Okumura, T.; Hori, T.; Imura, J.; Tsukada, K. KLF4 and NANOG are prognostic biomarkers for triple-negative breast cancer. Breast Cancer2017, 24, 326–335.

    Google Scholar 

  49. [49]

    Lu, X.; Mazur, S. J.; Lin, T.; Appella, E.; Xu, Y. The pluripotency factor Nanog promotes breast cancer tumorigenesis and metastasis. Oncogene2014, 33, 2655–2664.

    CAS  Google Scholar 

  50. [50]

    Zhang, J. M.; Wei, K.; Jiang, M. OCT4 but not SOX2 expression correlates with worse prognosis in surgical patients with triple-negative breast cancer. Breast Cancer2018, 25, 447–455.

    Google Scholar 

  51. [51]

    Cheng, C. C.; Shi, L. H.; Wang, X. J.; Wang, S. X.; Wan, X. Q.; Liu, S. R.; Wang, Y. F.; Lu, Z.; Wang, L. H.; Ding, Y. Stat3/Oct-4/c-Myc signal circuit for regulating stemness-mediated doxorubicin resistance of triple-negative breast cancer cells and inhibitory effects of WP1066. Int. J. Oncol.2018, 53, 339–348.

    CAS  Google Scholar 

  52. [52]

    Imrich, S.; Hachmeister, M.; Gires, O. EpCAM and its potential role in tumor-initiating cells. Cell Adh. Migr.2012, 6, 30–38.

    Google Scholar 

  53. [53]

    Osta, W. A.; Chen, Y.; Mikhitarian, K.; Mitas, M.; Salem, M.; Hannun, Y. A.; Cole, D. J.; Gillanders, W. E. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res.2004, 64, 5818–5824.

    CAS  Google Scholar 

  54. [54]

    Lobba, A. R. M.; Forni, M. F.; Carreira, A. C. O.; Sogayar, M. C. Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines. Cytometry A2012, 81, 1084–1091.

    CAS  Google Scholar 

  55. [55]

    Lu, H. H.; Clauser, K. R.; Tam, W. L.; Fröse, J.; Ye, X.; Eaton, E. N.; Reinhardt, F.; Donnenberg, V. S.; Bhargava, R.; Carr, S. A. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol.2014, 16, 1105–1117.

    CAS  Google Scholar 

  56. [56]

    Wheatley, S. P.; Altieri, D. C. Survivin at a glance. J. Cell Sci.2019, 132, jcs223826.

    CAS  Google Scholar 

  57. [57]

    Cho, Y. H.; Han, K. M.; Kim, D.; Lee, J.; Lee, S. H.; Choi, K. W.; Kim, J.; Han, Y. M. Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells2014, 32, 424–435.

    CAS  Google Scholar 

  58. [58]

    Liu, C. C.; DeRoo, E. P.; Stecyk, C.; Wolsey, M.; Szuchnicki, M.; Hagos, E. G. Impaired autophagy in mouse embryonic fibroblasts null for Krüppel-like Factor 4 promotes DNA damage and increases apoptosis upon serum starvation. Mol. Cancer2015, 14, 101.

    Google Scholar 

  59. [59]

    Hsieh, P. N.; Zhou, G. J.; Yuan, Y. Y.; Zhang, R. L.; Prosdocimo, D. A.; Sangwung, P.; Borton, A. H.; Boriushkin, E.; Hamik, A.; Fujioka, H. et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat. Commun.2017, 8, 914.

    Google Scholar 

  60. [60]

    Hasmim, M.; Janji, B.; Khaled, M.; Noman, M. Z.; Louache, F.; Bordereaux, D.; Abderamane, A.; Baud, V.; Mami-Chouaib, F.; Chouaib, S. Cutting edge: NANOG activates autophagy under hypoxic stress by binding to BNIP3L promoter. J. Immunol.2017, 198, 1423–1428.

    CAS  Google Scholar 

  61. [61]

    Liao, X. D.; Zhang, R. L.; Lu, Y.; Prosdocimo, D. A.; Sangwung, P.; Zhang, L. L.; Zhou, G. J.; Anand, P.; Lai, L.; Leone, T. C. et al. Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis. J. Clin. Invest.2015, 125, 3461–3476.

    Google Scholar 

  62. [62]

    Kumar, A.; Bhanja, A.; Bhattacharyya, J.; Jaganathan, B. G. Multiple roles of CD90 in cancer. Tumor Biol.2016, 37, 11611–11622.

    CAS  Google Scholar 

  63. [63]

    van der Gun, B. T. F.; Melchers, L. J.; Ruiters, M. H. J.; de Leij, L. F. M. H.; McLaughlin, P. M. J.; Rots, M. G. EpCAM in carcinogenesis: The good, the bad or the ugly. Carcinogenesis2010, 31, 1913–1921.

    CAS  Google Scholar 

  64. [64]

    Garg, H.; Suri, P.; Gupta, J. C.; Talwar, G. P.; Dubey, S. Survivin: A unique target for tumor therapy. Cancer Cell Int.2016, 16, 49.

    Google Scholar 

  65. [65]

    Siddharth, S.; Das, S.; Nayak, A.; Kundu, C. N. SURVIVIN as a marker for quiescent-breast cancer stem cells—An intermediate, adherent, pre-requisite phase of breast cancer metastasis. Clin. Exp. Meta.2016, 33, 661–675.

    CAS  Google Scholar 

  66. [66]

    Levy, J. M. M.; Towers, C. G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer2017, 17, 528–542.

    CAS  Google Scholar 

  67. [67]

    Lefort, S.; Joffre, C.; Kieffer, Y.; Givel, A. M.; Bourachot, B.; Zago, G.; Bieche, I.; Dubois, T.; Meseure, D.; Vincent-Salomon, A. et al. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy2014, 10, 2122–2142.

    CAS  Google Scholar 

  68. [68]

    O’Reilly, E. A.; Gubbins, L.; Sharma, S.; Tully, R.; Guang, M. H. Z.; Weiner-Gorzel, K.; McCaffrey, J.; Harrison, M.; Furlong, F.; Kell, M. et al. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin.2015, 3, 257–275.

    Google Scholar 

  69. [69]

    Pérez-Hernández, M.; Arias, A.; Martínez-García, D.; Pérez-Tomás, R.; Quesada, R.; Soto-Cerrato, V. Targeting autophagy for cancer treatment and tumor chemosensitization. Cancers2019, 11, 1599.

    Google Scholar 

  70. [70]

    Pelt, J.; Busatto, S.; Ferrari, M.; Thompson, E. A.; Mody, K.; Wolfram, J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol. Ther.2018, 191, 43–49.

    CAS  Google Scholar 

  71. [71]

    Abdullah, L. N.; Chow, E. K. H. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med.2013, 2, 3.

    Google Scholar 

  72. [72]

    Zhou, Z.; Feng, Z. W.; Hu, D.; Yang, P.; Gur, M.; Bahar, I.; Cristofanilli, M.; Gradishar, W. J.; Xie, X. Q.; Wan, Y. A novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted therapy. EBioMedicine2019, 44, 98–111.

    Google Scholar 

  73. [73]

    Choi, D. S.; Blanco, E.; Kim, Y. S.; Rodriguez, A. A.; Zhao, H.; Huang, T. H. M.; Chen, C. L.; Jin, G. X.; Landis, M. D.; Burey, L. A. et al. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. STEM CELLS2014, 32, 2309–2323.

    CAS  Google Scholar 

  74. [74]

    Bouchard, G.; Therriault, H.; Geha, S.; Bérubé-Lauzière, Y.; Bujold, R.; Saucier, C.; Paquette, B. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer2016, 16, 361.

    Google Scholar 

  75. [75]

    Liang, D. H.; Choi, D. S.; Ensor, J. E.; Kaipparettu, B. A.; Bass, B. L.; Chang, J. C. The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett.2016, 376, 249–258.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported with funding from the National Institutes of Health (NIH) under grant numbers R35GM119659 and R01CA211925. The content is solely the responsibility of the authors and does not necessarily represent the views of the NIH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emily S. Day.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Dang, M.N. & Day, E.S. Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine. Nano Res. 13, 1693–1703 (2020). https://doi.org/10.1007/s12274-020-2795-8

Download citation

Keywords

  • nanomedicine
  • nanoparticles
  • combination therapy
  • antibody delivery
  • cancer stem cells