A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage

Abstract

Emerging as an outperformed class of metal-organic frameworks (MOFs), square-octahedron (soc) topology MOFs (soc-MOFs) feature superior properties of high porosity, large gas storage capacity, and excellent thermal/chemical stability. We report here an iron based soc-MOF, denoted as Fe-pbpta (H4pbpta = 4,4′,4″,4‴-(1,4-phenylenbis(pyridine-4,2-6-triyl))-tetrabenzoic acid) possessing a very high Brunauer, Emmett and Teller (BET) surface area of 4,937 m2/g and a large pore volume of 2.15 cm3/g. The MOF demonstrates by far the highest gravimetric uptake of 369 cm3(STP)/g under the DOE operational storage conditions (35 bar and 298 K) and a high volumetric deliverable capacity of 192 cc/cc at 298 K and 65 bar. Furthermore, Fe-pbpta exhibits high thermal and aqueous stability making it a promising candidate for on-board methane storage.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    IEA (2017), Energy Technology Perspectives 2017, IEA, Paris. https://www.iea.org/reports/energy-technology-perspectives-2017 (accessed Dec 20, 2019).

    Google Scholar 

  2. [2]

    IPCC, 2018: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; Masson-Delmotte, V.; Zhai, P.; Pörtner, H. O.; Roberts, D.; Skea, J.; Shukla, P. R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R. et al., Eds.; Intergovernmental Panel on Climate Change: 2018.

  3. [3]

    Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater.2017, 16, 16–22.

    Google Scholar 

  4. [4]

    He, Y. B.; Zhou, W.; Qian, G. D.; Chen, B. L. Methane storage in metal-organic frameworks. Chem. Soc. Rev.2014, 43, 5657–5678.

    CAS  Google Scholar 

  5. [5]

    Li, B.; Wen, H. M.; Zhou, W.; Xu, J. Q.; Chen, B. L. Porous metalorganic frameworks: Promising materials for methane storage. Chem2016, 1, 557–580.

    CAS  Google Scholar 

  6. [6]

    Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev.2018, 47, 8611–8638.

    CAS  Google Scholar 

  7. [7]

    Song, Y. P.; Sun, Q.; Aguila, B.; Ma, S. Q. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci.2019, 6, 1801410.

    Google Scholar 

  8. [8]

    Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater.2018, 28, 1705553.

    Google Scholar 

  9. [9]

    Burrows, A. D. The chemistry of metal-organic frameworks. Synthesis, characterization, and applications, 2 volumes. Edited by stefan kaskel. Angew. Chem., Int. Ed.2017, 56, 1449.

    CAS  Google Scholar 

  10. [10]

    Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature2003, 423, 705–714.

    CAS  Google Scholar 

  11. [11]

    Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv.2018, 4, eaat9180.

    CAS  Google Scholar 

  12. [12]

    Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science2002, 295, 469–472.

    CAS  Google Scholar 

  13. [13]

    Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev.2012, 112, 673–674.

    CAS  Google Scholar 

  14. [14]

    Lu, W. G.; Wei, Z. W.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M. W.; Zhang, Q.; Gentle, T., III. et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev.2014, 43, 5561–5593.

    CAS  Google Scholar 

  15. [15]

    Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science2013, 341, 1230444.

    Google Scholar 

  16. [16]

    Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J. T.; Farha, O. K.; Yildirim, T. Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. J. Am. Chem. Soc.2013, 135, 11887–11894.

    CAS  Google Scholar 

  17. [17]

    Simon, C. M.; Kim, J.; Gomez-Gualdron, D. A.; Camp, J. S.; Chung, Y. G.; Martin, R. L.; Mercado, R.; Deem, M. W.; Gunter, D.; Haranczyk, M. et al. The materials genome in action: Identifying the performance limits for methane storage. Energy Environ. Sci.2015, 8, 1190–1199.

    CAS  Google Scholar 

  18. [18]

    Li, H.; Wang, K. C.; Sun, Y. J.; Lollar, C. T.; Li, J. L.; Zhou, H. C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today2018, 21, 108–121.

    CAS  Google Scholar 

  19. [19]

    Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science1999, 283, 1148–1150.

    CAS  Google Scholar 

  20. [20]

    Ma, S. Q.; Sun, D. F.; Simmons, J. M.; Collier, C. D.; Yuan, D. Q.; Zhou, H. C. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc.2008, 130, 1012–1016.

    CAS  Google Scholar 

  21. [21]

    Li, B.; Wen, H. M.; Wang, H. L.; Wu, H.; Tyagi, M.; Yildirim, T.; Zhou, W.; Chen, B. L. A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J. Am. Chem. Soc.2014, 136, 6207–6210.

    CAS  Google Scholar 

  22. [22]

    Lin, J. M.; He, C. T.; Liu, Y.; Liao, P. Q.; Zhou, D. D.; Zhang, J. P.; Chen, X. M. A metal-organic framework with a pore size/shape suitable for strong binding and close packing of methane. Angew. Chem., Int. Ed.2016, 55, 4674–4678.

    CAS  Google Scholar 

  23. [23]

    Gándara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M. High methane storage capacity in aluminum metal-organic frameworks. J. Am. Chem. Soc.2014, 136, 5271–5274.

    Google Scholar 

  24. [24]

    Zhang, M. X.; Zhou, W.; Pham, T.; Forrest, K. A.; Liu, W. L.; He, Y. B.; Wu, H.; Yildirim, T.; Chen, B. L.; Space, B. et al. Fine tuning of MOF-505 analogues to reduce low-pressure methane uptake and enhance methane working capacity. Angew. Chem., Int. Ed.2017, 56, 11426–11430.

    CAS  Google Scholar 

  25. [25]

    Mason, J. A.; Oktawiec, J.; Taylor, M. K.; Hudson, M. R.; Rodriguez, J.; Bachman, J. E.; Gonzalez, M. I.; Cervellino, A.; Guagliardi, A.; Brown, C. M. et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature2015, 527, 357–361.

    CAS  Google Scholar 

  26. [26]

    Wen, H. M.; Li, B.; Li, L. B.; Lin, R. B.; Zhou, W.; Qian, G. D.; Chen, B. L. A metal-organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities. Adv. Mater.2018, 30, 1704792.

    Google Scholar 

  27. [27]

    Kundu, T.; Shah, B. B.; Bolinois, L.; Zhao, D. Functionalizationinduced breathing control in metal-organic frameworks for methane storage with high deliverable capacity. Chem. Mater.2019, 31, 2842–2847.

    CAS  Google Scholar 

  28. [28]

    Belmabkhout, Y.; Pillai, R. S.; Alezi, D.; Shekhah, O.; Bhatt, P. M.; Chen, Z. J.; Adil, K.; Vaesen, S.; De Weireld, G.; Pang, M. L. et al. Metal-organic frameworks to satisfy gas upgrading demands: Finetuning the soc-MOF platform for the operative removal of H2S. J. Mater. Chem. A2017, 5, 3293–3303.

    CAS  Google Scholar 

  29. [29]

    Pang, M. L.; Cairns, A. J.; Liu, Y. L.; Belmabkhout, Y.; Zeng, H. C.; Eddaoudi, M. Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. J. Am. Chem. Soc.2013, 135, 10234–10237.

    CAS  Google Scholar 

  30. [30]

    Mavrandonakis, A.; Vogiatzis, K. D.; Boese, A. D.; Fink, K.; Heine, T.; Klopper, W. Ab initio study of the adsorption of small molecules on metal-organic frameworks with oxo-centered trimetallic building units: The role of the undercoordinated metal ion. Inorg. Chem.2015, 54, 8251–8263.

    CAS  Google Scholar 

  31. [31]

    Li, B.; Wen, H. M.; Wang, H. L.; Wu, H.; Yildirim, T.; Zhou, W.; Chen, B. L. Porous metal-organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy Environ. Sci.2015, 8, 2504–2511.

    CAS  Google Scholar 

  32. [32]

    Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A. H. et al. MOF crystal chemistry paving the way to gas storage needs: Aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc.2015, 137, 13308–13318.

    CAS  Google Scholar 

  33. [33]

    Cairns, A. J.; Eckert, J.; Wojtas, L.; Thommes, M.; Wallacher, D.; Georgiev, P. A.; Forster, P. M.; Belmabkhout, Y.; Ollivier, J.; Eddaoudi, M. Gaining insights on the H2-sorbent interactions: Robust soc-MOF platform as a case study. Chem. Mater.2016, 28, 7353–7361.

    CAS  Google Scholar 

  34. [34]

    Wang, B.; Zhang, X.; Huang, H. L.; Zhang, Z. J.; Yildirim, T.; Zhou, W.; Xiang, S. C.; Chen, B. L. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res., in press, DOI: 10.1007/s12274-020-2713-0.

  35. [35]

    Towsif Abtab, S. M.; Alezi, D.; Bhatt, P. M.; Shkurenko, A.; Belmabkhout, Y.; Aggarwal, H.; Weseliński, Ł. J.; Alsadun, N.; Samin, U.; Hedhili, M. N. et al. Reticular chemistry in action: A hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem2018, 4, 94–105.

    CAS  Google Scholar 

  36. [36]

    Zhang, J. W.; Qu, P.; Hu, M. C.; Li, S. N.; Jiang, Y. C.; Zhai, Q. G. Topology-guided design for Sc-soc-MOFs and their enhanced storage and separation for CO2 and C2-hydrocarbons. Inorg. Chem.2019, 58, 16792–16799.

    CAS  Google Scholar 

  37. [37]

    Zhai, Q. G.; Bu, X. H.; Mao, C. Y.; Zhao, X.; Feng, P. Y. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. J. Am. Chem. Soc.2016, 138, 2524–2527.

    CAS  Google Scholar 

  38. [38]

    Liu, Y. L.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. C.; Luebke, R.; Eddaoudi, M. Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage. Angew. Chem., Int. Ed.2007, 46, 3278–3283.

    CAS  Google Scholar 

  39. [39]

    Verma, G.; Kumar, S.; Pham, T.; Niu, Z.; Wojtas, L.; Perman, J. A.; Chen, Y. S.; Ma, S. Q. Partially interpenetrated NbO topology metalorganic framework exhibiting selective gas adsorption. Cryst. Growth Des.2017, 17, 2711–2717.

    CAS  Google Scholar 

  40. [40]

    Hulvey, Z.; Vlaisavljevich, B.; Mason, J. A.; Tsivion, E.; Dougherty, T. P.; Bloch, E. D.; Head-Gordon, M.; Smit, B.; Long, J. R.; Brown, C. M. Critical factors driving the high volumetric uptake of methane in Cu3(btc)2. J. Am. Chem. Soc.2015, 137, 10816–10825.

    CAS  Google Scholar 

  41. [41]

    Mason, J. A.; Veenstra, M.; Long, J. R. Evaluating metal-organic frameworks for natural gas storage. Chem. Sci.2014, 5, 32–51.

    CAS  Google Scholar 

  42. [42]

    Moellmer, J.; Celer, E. B.; Luebke, R.; Cairns, A. J.; Staudt, R.; Eddaoudi, M.; Thommes, M. Insights on adsorption characterization of metal-organic frameworks: A benchmark study on the novel soc-MOF. Micropor. Mesopor. Mat.2010, 129, 345–353.

    CAS  Google Scholar 

  43. [43]

    Pang, M. L.; Cairns, A. J.; Liu, Y. L.; Belmabkhout, Y.; Zeng, H. C.; Eddaoudi, M. Highly monodisperse MIII-based soc-MOFs (M = In and Ga) with cubic and truncated cubic morphologies. J. Am. Chem. Soc.2012, 134, 13176–13179.

    CAS  Google Scholar 

  44. [44]

    Bratsos, I.; Tampaxis, C.; Spanopoulos, I.; Demitri, N.; Charalambopoulou, G.; Vourloumis, D.; Steriotis, T. A.; Trikalitis, P. N. Heterometallic In(III)-Pd(II) porous metal-organic framework with square-octahedron topology displaying high CO2 uptake and selectivity toward CH4 and N2. Inorg. Chem.2018, 57, 7244–7251.

    CAS  Google Scholar 

  45. [45]

    Liu, H. Y.; Gao, G. M.; Bao, F. L.; Wei, Y. H.; Wang, H. Y. Enhanced water stability and selective carbon dioxide adsorption of a soc-MOF with amide-functionalized linkers. Polyhedron2019, 160, 207–212.

    CAS  Google Scholar 

  46. [46]

    Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metalorganic frameworks: Design, synthesis, and applications. Adv. Mater.2018, 30, 1704303.

    Google Scholar 

  47. [47]

    Farha, O. K.; Özgür Yazaydın, A.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem.2010, 2, 944–948.

    CAS  Google Scholar 

  48. [48]

    Stoeck, U.; Krause, S.; Bon, V.; Senkovska, I.; Kaskel, S. A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem. Commun.2012, 48, 10841–10843.

    CAS  Google Scholar 

  49. [49]

    Spanopoulos, I.; Tsangarakis, C.; Klontzas, E.; Tylianakis, E.; Froudakis, G.; Adil, K.; Belmabkhout, Y.; Eddaoudi, M.; Trikalitis, P. N. Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J. Am. Chem. Soc.2016, 138, 1568–1574.

    CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Hydrogen and Fuel Cell Technologies and Vehicle Technologies Offices under Award Number DE-EE0008812. S. K. acknowledges the financial support from the University Grants Commission (UGC), New Delhi, India (No. F 5-80/2014(IC)). ChemMatCARS Sector 15 is principally supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation, under Grant Number NSF/CHE-1346572. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. G. V. would further like to acknowledge Jason Exley (Sales Engineer, Micromeritics USA) for help and support provided with the measurements and the HKUST reference data.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sanjay Kumar or Shengqian Ma.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, G., Kumar, S., Vardhan, H. et al. A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Res. 14, 512–517 (2021). https://doi.org/10.1007/s12274-020-2794-9

Download citation

Keywords

  • metal-organic framework (MOF)
  • reticular chemistry
  • methane storage
  • aqueous stability
  • high gravimetric and volumetric uptake