Skip to main content
Log in

In situ assembly of magnetic nanocrystals/graphene oxide nanosheets on tumor cells enables efficient cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to the stimulus-responsive and dynamic properties, magnetism-driven assembly of building blocks to form ordered structures is always a marvelous topic. While abundant magnetic assemblies have been developed in ideal physical and chemical conditions, it remains a challenge to realize magnetic assembly in complicated biological systems. Herein, we report a kind of biomacromolecule-modified magnetic nanosheets, which are mainly composed of superparamagnetic graphene oxide (γ-Fe2O3@GO), the tumor-targeting protein transferrin (TF), and the mitochondrion-targeting peptide (MitP). Such large-size nanosheets (0.5–1 μm), noted as L-Fe2O3@GO-MitP-TF, can successfully in situ assemble on the surface of tumor cells in a size-dependent and tumor cell-specific way, leading to severe inhibition of nutrient uptake for the tumor cells. More significantly, the nanostructures could efficiently confine the tumor cells, preventing both invasion and metastasis of tumor cells both in vitro and in vivo. Moreover, the 2D assemblies could remarkably disrupt the mitochondria and induce apoptosis, remarkably eradicating tumors under near-infrared (NIR) irradiation. This study sheds light on the development of new nano-systems for efficient cancer therapy and other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erb, R. M.; Son, H. S.; Samanta, B.; Rotello, V. M.; Yellen, B. B. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature2009, 457, 999–1002.

    CAS  Google Scholar 

  2. Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol.2010, 5, 15–25.

    CAS  Google Scholar 

  3. Ahniyaz, A.; Sakamoto, Y.; Bergström, L. Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes. Proc. Natl. Acad. Sci. USA2007, 104, 17570–17574.

    CAS  Google Scholar 

  4. Chen, G.; Gibson, K. J.; Liu, D.; Rees, H. C.; Lee, J. H.; Xia, W. W.; Lin, R. Q.; Xin, H. L.; Gang, O.; Weizmann, Y. Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater.2019, 18, 169–174.

    CAS  Google Scholar 

  5. Wang, M. S.; Yin, Y. D. Magnetically responsive nanostructures with tunable optical properties. J. Am. Chem. Soc.2016, 138, 6315–6323.

    CAS  Google Scholar 

  6. Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U. Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat. Commun.2014, 5, 4702.

    CAS  Google Scholar 

  7. Li, Z. W.; Wang, M. S.; Zhang, X. L.; Wang, D. W.; Xu, W. J.; Yin, Y. D. Magnetic assembly of nanocubes for orientation-dependent photonic responses. Nano Lett.2019, 19, 6673–6680.

    CAS  Google Scholar 

  8. Balcells, L.; Stanković, I.; Konstantinović, Z.; Alagh, A.; Fuentes, V.; López-Mir, L.; Oró, J.; Mestres, N.; García, G.; Pomar, A. et al. Spontaneous in-flight assembly of magnetic nanoparticles into macroscopic chains. Nanoscale2019, 11, 14194–14202.

    CAS  Google Scholar 

  9. Velez, C.; Torres-Díaz, I.; Maldonado-Camargo, L.; Rinaldi, C.; Arnold, D. P. Magnetic assembly and cross-linking of nanoparticles for releasable magnetic microstructures. ACS Nano2015, 9, 10165–10172.

    CAS  Google Scholar 

  10. Han, Q.; Wang, X.; Yang, Z. Y.; Zhu, W. Y.; Zhou, X. M.; Jiang, H. J. Fe3O4@rGO doped molecularly imprinted polymer membrane based on magnetic field directed self-assembly for the determination of amaranth. Talanta2014, 123, 101–108.

    CAS  Google Scholar 

  11. Lee, H.; Thirunavukkarasu, G. K.; Kim, S.; Lee, J. Y. Remote induction of in situ hydrogelation in a deep tissue, using an alternating magnetic field and superparamagnetic nanoparticles. Nano Res.2018, 11, 5997–6009.

    CAS  Google Scholar 

  12. Diller, E.; Sitti, M. Three-dimensionalprogrammable assembly by untethered magnetic robotic micro-grippers. Adv. Func. Mater.2014, 24, 4397–4404.

    CAS  Google Scholar 

  13. Han, K.; Shields, C. W.; Diwakar, N. M.; Bharti, B.; López, G. P.; Velev, O. D. Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. Sci. Adv.2017, 3, e1701108.

    Google Scholar 

  14. Yuan, J. Y.; Xu, Y. Y.; Müller, A. H. E. One-dimensional magnetic inorganic-organic hybrid nanomaterials. Chem. Soc. Rev.2011, 40, 640–655.

    CAS  Google Scholar 

  15. Meyer, A.; Franz, N.; Oepen, H. P.; Perlich, J.; Carbone, G.; Metzger, T. H. In situ grazing-incidence small-angle X-ray scattering observation of block-copolymer templated formation of magnetic nanodot arrays and their magnetic properties. Nano Res.2017, 10, 456–471.

    CAS  Google Scholar 

  16. Ramade, J.; Troc, N.; Boisron, O.; Pellarin, M.; Lebault, M. A.; Cottancin, E.; Oiko, V. T. A.;Gomes R. C.; Rodrigues, V.; Hillenkamp, M. Nano-fried-eggs: Structural, optical, and magnetic characterization of physically prepared iron-silver nanoparticles. Nano Res.2018, 11, 6074–6085.

    CAS  Google Scholar 

  17. Wang, L.; Dong, S. L.; Hao, J. C. Recent progress of magnetic surfactants: Self-assembly, properties and functions. Curr. Opin. Colloid Interface Sci.2018, 35, 81–90.

    CAS  Google Scholar 

  18. Tabassum, D. P.; Polyak, K. Tumorigenesis: It takes a village. Nat. Rev. Cancer2015, 15, 473–483.

    CAS  Google Scholar 

  19. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature2005, 438, 932–936.

    CAS  Google Scholar 

  20. Hoffman, R. M. Patient-derived orthotopic xenografts: Better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer2015, 15, 451–452.

    CAS  Google Scholar 

  21. Strilic, B.; Yang, L. D.; Albarrán-Juárez, J.; Wachsmuth, L.; Han, K.; Müller, U. C.; Pasparakis, M.; Offermanns, S. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature2016, 536, 215–218.

    CAS  Google Scholar 

  22. Martin, O. A.; Anderson, R. L.; Narayan, K.; MacManus, M. P. Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat. Rev. Clin. Oncol.2017, 14, 32–44.

    CAS  Google Scholar 

  23. Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer2017, 17, 20–37.

    CAS  Google Scholar 

  24. Kai, F.; Drain, A. P.; Weaver, V. M. The extracellular matrix modulates the metastatic journey. Dev. Cell2019, 49, 332–346.

    CAS  Google Scholar 

  25. Ngwa, W.; Irabor, O. C.; Schoenfeld, J. D.; Hesser, J.; Demaria, S.; Formenti, S. C. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer2018, 18, 313–322.

    CAS  Google Scholar 

  26. Arvanitis, C. D.; Ferraro, G. B.; Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer2020, 20, 26–41.

    CAS  Google Scholar 

  27. D’Costa, Z.; Jones, K.; Azad, A.; Van Stiphout, R.; Lim, S. Y.; Gomes, A. L.; Kinchesh, P.; Smart, S. C.; Gillies McKenna, W.; Buffa, F. M. et al. Gemcitabine-induced TIMP1 attenuates therapy response and promotes tumor growth and liver metastasis in pancreatic cancer. Cancer Res.2017, 77, 5952–5962.

    Google Scholar 

  28. Bushnell, G. G.; Hardas, T. P.; Hartfield, R. M.; Zhang, Y. N.; Oakes, R. S.; Ronquist, S.; Chen, H. M.; Rajapakse, I.; Wicha, M. S.; Jeruss, J. S. et al. Biomaterial scaffolds recruit an aggressive population of metastatic tumor cells in vivo. Cancer Res.2019, 79, 2042–2053.

    CAS  Google Scholar 

  29. Chablani, P.; Nguyen, P.; Pan, X. L.; Robinson, A.; Walston, S.; Wu, C.; Frankel, W. L.; Chen, W.; Bekaii-Saab, T.; Chakravarti, A. et al. Perineural invasion predicts for distant metastasis in locally advanced rectal cancer treated with neoadjuvant chemoradiation and surgery. Am. J. Clin. Oncol.2017, 40, 561–568.

    Google Scholar 

  30. Peela, N.; Truong, D.; Saini, H.; Chu, H.; Mashaghi, S.; Ham, S. L.; Singh, S.; Tavana, H.; Mosadegh. B.; Nikkhah, M. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials2017, 133, 176–207.

    CAS  Google Scholar 

  31. Ye, H.; Wang, K. Y.; Wang, M. L.; Liu, R. Z.; Song, H.; Li, N.; Lu, Q.; Zhang, W. J.; Du, Y. Q.; Yang, W. Q. et al. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials2019, 206, 1–12.

    CAS  Google Scholar 

  32. Yu, Q. L.; Zhang, Y. M.; Liu, Y. H.; Xu, X.; Liu, Y. Magnetism and photo dual-controlled supramolecular assembly for suppression of tumor invasion and metastasis. Sci. Adv.2018, 4, eaat2297.

  33. Yu, Q. L.; Zhang, Y. M.; Liu, Y. H.; Liu, Y. Magnetic supramolecular nanofibers of gold nanorods for photothermal therapy. Adv. Ther.2019, 2, 1800137.

    CAS  Google Scholar 

  34. Choi, C. H. J.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA2010, 107, 1235–1240.

    CAS  Google Scholar 

  35. Li, Y. F.; Chen, M.; Yao, B. W.; Lu, X.; Zhang, X. Q.; He, P.; Vasilatos, S. N.; Ren, X. M.; Bian, W. H.; Yao, C. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrugresistant breast cancer therapy. J. Mater. Chem. B2019, 7, 5814–5824.

    CAS  Google Scholar 

  36. Wei, Y. H.; Gu, X. L.; Sun, Y. P.; Meng, F. H.; Storm, G.; Zhong, Z. Y. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J. Control. Release2020, 319, 407–415.

    CAS  Google Scholar 

  37. Horton, K. L.; Stewart, K. M.; Fonseca, S. B.; Guo, Q.; Kelley, S. O. Mitochondria-penetrating peptides. Chem. Biol.2008, 15, 375–382.

    CAS  Google Scholar 

  38. Zhang, B.; Yu, Q. L.; Zhang, Y. M.; Liu, Y. Two-dimensional supramolecular assemblies based on β-cyclodextrin-grafted graphene oxide for mitochondrial dysfunction and photothermal therapy. Chem. Commun.2019, 55, 12200–12203.

    CAS  Google Scholar 

  39. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano2010, 4, 4806–4814.

    CAS  Google Scholar 

  40. Robinson, J. T.; Tabakman, S. M.; Liang, Y.Y.; Wang, H. L.; Sanchez Casalongue, H.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc.2011, 133, 6825–6831.

    CAS  Google Scholar 

  41. Daniels, T. R.; Delgado, T.; Rodriguez, J. A.; Helguera, G.; Penichet, M. L. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immun.2006, 121, 144–158.

    CAS  Google Scholar 

  42. Mu, Q. X.; Su, G. X.; Li, L. W.; Gilbertson, B. O.; Yu, L. H.; Zhang, Q.; Sun, Y. P.; Yan, B. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl. Mater. Interfaces2012, 4, 2259–2266.

    CAS  Google Scholar 

  43. Zhu, J. Q.; Xu, M.; Gao, M.; Zhang, Z. H.; Xu, Y.; Xia, T.; Liu, S. J. Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano2017, 11, 2637–2651.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially funded by the National Natural Science Foundation of China (Nos. 31870139 and 21761132008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilin Yu or Shu-Hong Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Lu, Y., Yu, Q. et al. In situ assembly of magnetic nanocrystals/graphene oxide nanosheets on tumor cells enables efficient cancer therapy. Nano Res. 13, 1133–1140 (2020). https://doi.org/10.1007/s12274-020-2759-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2759-z

Keywords

Navigation