Skip to main content

Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance

Abstract

The local coordination environment of catalysts has been investigated for an extended period to obtain enhanced catalytic performance. Especially with the advancement of single-atom catalysts (SACs), research on the coordination environment has been advanced to the atomic level. The surrounding coordination atoms of central metal atoms play important roles in their catalytic activity, selectivity and stability. In recent years, remarkable improvements of the catalytic performance of SACs have been achieved by the tailoring of coordination atoms, coordination numbers and second- or higher-coordination shells, which provided new opportunities for the further development of SACs. In this review, the characterization of coordination environment, tailoring of the local coordination environment, and their related adjustable catalytic performance will be discussed. We hope this review will provide new insights on further research of SACs.

References

  1. [1]

    Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule2018, 2, 1242–1264.

    CAS  Google Scholar 

  2. [2]

    Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res.2013, 46, 1740–1748.

    CAS  Google Scholar 

  3. [3]

    Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem2019, 5, 1371–1397.

    CAS  Google Scholar 

  4. [4]

    Cook, S. A.; Borovik, A. S. Molecular designs for controlling the local environments around metal ions. Acc. Chem. Res.2015, 48, 2407–2414.

    CAS  Google Scholar 

  5. [5]

    Tao, L.; Wang, Y. Q.; Zou, Y. Q.; Zhang, N.; Zhang, Y. Q.; Wu, Y. J.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Charge transfer modulated activity of carbon-based electrocatalysts. Adv. Energy Mater.2020, 10, 1901227.

    CAS  Google Scholar 

  6. [6]

    Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res.2019, 12, 2067–2080.

    CAS  Google Scholar 

  7. [7]

    Mao, J. J.; Li, J.; Pei, J. J.; Liu, Y.; Wang, D. S.; Li, Y. D. Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today2019, 26, 164–175.

    CAS  Google Scholar 

  8. [8]

    Wen, J. F.; Chen, Y. J.; Ji, S. F.; Zhang, J.; Wang, D. S.; Li, Y. D. Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res.2019, 12, 2584–2588.

    CAS  Google Scholar 

  9. [9]

    Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem.2011, 3, 634–641.

    CAS  Google Scholar 

  10. [10]

    Li, Z. J.; Wang, D. H.; Wu, Y.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev.2018, 5, 673–689.

    CAS  Google Scholar 

  11. [11]

    Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv.2015, 1, e1500462.

    Google Scholar 

  12. [12]

    Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci.2015, 8, 1594–1601.

    CAS  Google Scholar 

  13. [13]

    Liu, J. Y. Catalysis by supported single metal atoms. Acs Catal.2017, 7, 34–59.

    CAS  Google Scholar 

  14. [14]

    Lin, J.; Wang, X. D. Rh single atom catalyst for direct conversion of methane to oxygenates. Sci. China Mater.2018, 61, 758–760.

    CAS  Google Scholar 

  15. [15]

    Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun.2019, 10, 234.

    Google Scholar 

  16. [16]

    Liang, Z. B.; Guo, W. H.; Zhao, R.; Qiu, T. J.; Tabassum, H.; Zou, R. Q. Engineering atomically dispersed metal sites for electrocatalytic energy conversion. Nano Energy2019, 64, 103917.

    CAS  Google Scholar 

  17. [17]

    Liu, J.; Jin, Z.; Wang, X.; Ge, J. J.; Liu, C. P.; Xing, W. Recent advances in active sites identification and regulation of M-N/C electro-catalysts towards ORR. Sci. China Chem.2019, 62, 669–683.

    CAS  Google Scholar 

  18. [18]

    Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res.2015, 8, 2913–2924.

    CAS  Google Scholar 

  19. [19]

    Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S. J.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun.2018, 9, 4454.

    Google Scholar 

  20. [20]

    Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as cokeresistant catalysts for efficient C-H activation. Nat. Chem.2018, 10, 325–332.

    CAS  Google Scholar 

  21. [21]

    Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc.2017, 139, 10790–10798.

    CAS  Google Scholar 

  22. [22]

    Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci.2019, 12, 2890–2923.

    CAS  Google Scholar 

  23. [23]

    Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem2019, 5, 1486–1511.

    CAS  Google Scholar 

  24. [24]

    Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem2019, 5, 204–214.

    CAS  Google Scholar 

  25. [25]

    Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc.2019, 141, 9664–9672.

    CAS  Google Scholar 

  26. [26]

    Zhao, C. M.; Wang, Y.; Li, Z. J.; Chen, W. X.; Xu, Q.; He, D. S.; Xi, D. S.; Zhang, Q. H.; Yuan, T. W.; Qu, Y. T. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule2019, 3, 584–594.

    CAS  Google Scholar 

  27. [27]

    Millet, M. M.; Algara-Siller, G.; Wrabetz, S.; Mazheika, A.; Girgsdies, F.; Teschner, D.; Seitz, F.; Tarasov, A.; Levchenko, S. V.; Schlögl, R. et al. Ni single atom catalysts for CO2 activation. J. Am. Chem. Soc.2019, 141, 2451–2461.

    CAS  Google Scholar 

  28. [28]

    Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem.2019, 11, 222–228.

    CAS  Google Scholar 

  29. [29]

    Zhang, Z.; Ma, C.; Tu, Y. C.; Si, R.; Wei, J.; Zhang, S. H.; Wang, Z.; Li, J. F.; Wang, Y.; Deng, D. H. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res.2019, 12, 2313–2317.

    CAS  Google Scholar 

  30. [30]

    Liu, P. X.; Zheng, N. F. Coordination chemistry of atomically dispersed catalysts. Natl. Sci. Rev.2018, 5, 636–638.

    CAS  Google Scholar 

  31. [31]

    Liu, J. C.; Tang, Y.; Wang, Y. G.; Zhang, T.; Li, J. Theoretical understanding of the stability of single-atom catalysts. Natl. Sci. Rev.2018, 5, 638–641.

    CAS  Google Scholar 

  32. [32]

    Zhu, Y. Z.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods2019, 3, 1800438.

    Google Scholar 

  33. [33]

    Wang, Y.; Chen, Z.; Shen, R.; Cao, X.; Chen, Y. G.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D. Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Res.2016, 9, 1209–1219.

    CAS  Google Scholar 

  34. [34]

    Liang, J. X.; Yu, Q.; Yang, X. F.; Zhang, T.; Li, J. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res.2018, 11, 1599–1611.

    CAS  Google Scholar 

  35. [35]

    Gui, J.; Ji, M. W.; Liu, J. J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: Old concept, new applications. Angew. Chem., Int. Ed.2015, 54, 3683–3687.

    CAS  Google Scholar 

  36. [36]

    Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew. Chem., Int. Ed.2019, Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics, 4852–4857.

    Google Scholar 

  37. [37]

    Li, X. Y.; Iqbal, M. A.; Xu, M.; Wang, Y. C.; Wang, H. Z.; Ji, M. W.; Wan, X. D.; Slater, T. J. A.; Liu, J.; Liu, J. J. et al. Au@HgxCd1-xTe core@shell nanorods by sequential aqueous cation exchange for near-infrared photodetectors. Nano Energy2019, 57, 57–65.

    CAS  Google Scholar 

  38. [38]

    Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci.2019, 12, 3508–3514.

    CAS  Google Scholar 

  39. [39]

    Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc.2019, 141, 20118–20126.

    CAS  Google Scholar 

  40. [40]

    Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater.2018, 30, 1800396.

    Google Scholar 

  41. [41]

    Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev.2020, 120, 623–682.

    CAS  Google Scholar 

  42. [42]

    Bordiga, S.; Groppo, E.; Agostini, G.; van Bokhoven, J. A.; Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev.2013, 113, 1736–1850.

    CAS  Google Scholar 

  43. [43]

    Moliner, M.; Gabay, J. E.; Kliewer, C. E.; Carr, R. T.; Guzman, J.; Casty, G. L.; Serna, P.; Corma, A. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc.2016, 138, 15743–15750.

    CAS  Google Scholar 

  44. [44]

    Becknell, N.; Kang, Y. J.; Chen, C.; Resasco, J.; Kornienko, N.; Guo, J. H.; Markovic, N. M.; Somorjai, G. A.; Stamenkovic, V. R.; Yang, P. D. Atomic structure of Pt3Ni nanoframe electrocatalysts by in situ X-ray absorption spectroscopy. J. Am. Chem. Soc.2015, 137, 15817–15824.

    CAS  Google Scholar 

  45. [45]

    Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal.2018, 8, 2824–2832.

    CAS  Google Scholar 

  46. [46]

    Wang, L. B.; Zhang, W. B.; Wang, S. P.; Gao, Z. H.; Luo, Z. H.; Wang, X.; Zeng, R.; Li, A. W.; Li, H. L.; Wang, M. L. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun.2016, 7, 14036.

    CAS  Google Scholar 

  47. [47]

    Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc.2019, 141, 16569–16573.

    CAS  Google Scholar 

  48. [48]

    Matsubu, J. C.; Zhang, S. Y.; DeRita, L.; Marinkovic, N. S.; Chen, J. G.; Graham, G. W.; Pan, X. Q.; Christopher, P. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem.2017, 9, 120–127.

    CAS  Google Scholar 

  49. [49]

    Lin, Y. C.; Dumcenco, D. O.; Komsa, H. P.; Niimi, Y.; Krasheninnikov, A. V.; Huang, Y. S.; Suenaga, K. Properties of individual dopant atoms in single-layer MoS2: Atomic structure, migration, and enhanced reactivity. Adv. Mater.2014, 26, 2857–2861.

    CAS  Google Scholar 

  50. [50]

    DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater.2019, 18, 746–751.

    CAS  Google Scholar 

  51. [51]

    Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal.2018, 1, 339–348.

    CAS  Google Scholar 

  52. [52]

    Zhu, G. Q.; Liu, F.; Wang, Y. C.; Wei, Z. D.; Wang, W. Systematic exploration of N, C coordination effects on the ORR performance of Mn-Nx doped graphene catalysts based on DFT calculations. Phys. Chem. Chem. Phys.2019, 21, 12826–12836.

    CAS  Google Scholar 

  53. [53]

    Wan, C. Z.; Duan, X. F.; Huang, Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater., in press, DOI: https://doi.org/10.1002/aenm.201903815.

  54. [54]

    Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater.2015, 14, 937–942.

    CAS  Google Scholar 

  55. [55]

    Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci.2018, 11, 2348–2352.

    CAS  Google Scholar 

  56. [56]

    Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed.2015, 54, 14031–14035.

    CAS  Google Scholar 

  57. [57]

    Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc.2015, 137, 10484–10487.

    CAS  Google Scholar 

  58. [58]

    Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed.2018, 57, 9382–9386.

    CAS  Google Scholar 

  59. [59]

    Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun.2018, 9, 3861.

    Google Scholar 

  60. [60]

    Li, H. N.; Cao, C. Y.; Liu, J.; Shi, Y.; Si, R.; Gu, L.; Song, W. G. Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci. China Mater.2019, 62, 1306–1314.

    CAS  Google Scholar 

  61. [61]

    Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater.2019, 31, 1900509.

    Google Scholar 

  62. [62]

    Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci.2018, 11, 893–903.

    CAS  Google Scholar 

  63. [63]

    Peng, P.; Shi, L.; Huo, F.; Mi, C. X.; Wu, X. H.; Zhang, S. J.; Xiang, Z. H. A pyrolysis-free path toward superiorly catalytic nitrogencoordinated single atom. Sci. Adv.2019, 5, eaaw2322.

    Google Scholar 

  64. [64]

    Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed.2016, 55, 10800–10805.

    CAS  Google Scholar 

  65. [65]

    Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater.2018, 30, 1706758.

    Google Scholar 

  66. [66]

    Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed.2019, 131, 4315–4319.

    Google Scholar 

  67. [67]

    Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc.2017, 139, 8078–8081.

    CAS  Google Scholar 

  68. [68]

    Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C. et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc.2017, 139, 17269–17272.

    CAS  Google Scholar 

  69. [69]

    Zhang, M. L.; Wang, Y. G.; Chen, W. X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. J. Am. Chem. Soc.2017, 139, 10976–10979.

    CAS  Google Scholar 

  70. [70]

    Zhang, L. Z.; Jia, Y.; Liu, H. L.; Zhuang, L. Z.; Yan, X. C.; Lang, C. G.; Wang, X.; Yang, D. J.; Huang, K. K.; Feng, S. H. et al. Charge polarization from atomic metals on adjacent graphitic layers for enhancing the hydrogen evolution reaction. Angew. Chem., Int. Ed.2019, 58, 9404–9408.

    CAS  Google Scholar 

  71. [71]

    Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc.2013, 135, 15314–15317.

    CAS  Google Scholar 

  72. [72]

    Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science2016, 352, 797–801.

    CAS  Google Scholar 

  73. [73]

    Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater.2018, 30, 1705369.

    Google Scholar 

  74. [74]

    Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation. J. Am. Chem. Soc.2018, 140, 7407–7410.

    CAS  Google Scholar 

  75. [75]

    Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed.2020, 59, 1295–1301.

    CAS  Google Scholar 

  76. [76]

    Tang, Y.; Asokan, C.; Xu, M. J.; Graham, G. W.; Pan, X. Q.; Christopher, P.; Li, J.; Sautet, P. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun.2019, 10, 4488.

    Google Scholar 

  77. [77]

    Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Sheng Su, D.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun.2019, 10, 4500.

    Google Scholar 

  78. [78]

    Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y. J.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3-x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed.2019, 58, 16038–16042.

    CAS  Google Scholar 

  79. [79]

    Ma, Y. F.; Chi, B. L.; Liu, W.; Cao, L.; Lin, Y.; Zhang, X. H.; Ye, X. X.; Wei, S. Q.; Lu, J. L. Tailoring of the proximity of platinum single atoms on CeO2 using phosphorus boosts the hydrogenation activity. ACS Catal.2019, 9, 8404–8412.

    CAS  Google Scholar 

  80. [80]

    Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res.2019, 12, 1401–1409.

    CAS  Google Scholar 

  81. [81]

    Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res.2019, 12, 1401–1409.

    CAS  Google Scholar 

  82. [82]

    Liu, K. L.; Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Zhang, Q. H.; Jing, W. T.; Ruan, P. P.; Gu, L.; Fu, G.; Zheng, N. F. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports. CCS Chem.2019, 1, 207–214.

    CAS  Google Scholar 

  83. [83]

    Zhou, X.; Shen, Q.; Yuan, K. D.; Yang, W. S.; Chen, Q. W.; Geng, Z. H.; Zhang, J. L.; Shao, X.; Chen, W.; Xu, G. Q. et al. Unraveling charge State of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc.2018, 140, 554–557.

    CAS  Google Scholar 

  84. [84]

    Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J. Am. Chem. Soc.2019, 141, 14515–14519.

    CAS  Google Scholar 

  85. [85]

    Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun.2018, 9, 1002.

    Google Scholar 

  86. [86]

    Wang, F. F.; Li, Q.; Xu, D. S. Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater.2017, 7, 1700529.

    Google Scholar 

  87. [87]

    Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev.2019, 48, 4178–4280.

    CAS  Google Scholar 

  88. [88]

    Wang, B.; Cai, H. R.; Shen, S. H. Single metal atom photocatalysis. Small Methods2019, 3, 1800447.

    Google Scholar 

  89. [89]

    Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev.2018, 118, 4981–5079.

    CAS  Google Scholar 

  90. [90]

    Li, H. S.; Wang, S. S.; Sawada, H.; Han, G. G. D.; Samuels, T.; Allen, C. S.; Kirkland, A. I.; Grossman, J. C.; Warner, J. H. Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. ACS Nano2017, 11, 3392–3403.

    CAS  Google Scholar 

  91. [91]

    Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem.2017, 9, 810–816.

    CAS  Google Scholar 

  92. [92]

    Liu, J.; Zhao, Q.; Liu, J. L.; Wu, Y. S.; Cheng, Y.; Ji, M. W.; Qian, H. M.; Hao, W. C.; Zhang, L. J.; Wei, X. J. et al. Heterovalent-dopingenabled efficient dopant luminescence and controllable electronic impurity via a new strategy of preparing II–VI nanocrystals. Adv. Mater.2015, 27, 2753–2761.

    Google Scholar 

  93. [93]

    Wang, H. Z.; Gao, Y. Y.; Liu, J.; Li, X. Y.; Ji, M. W.; Zhang, E. H.; Cheng, X. Y.; Xu, M.; Liu, J. J.; Rong, H. P. et al. Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region. Adv. Energy Mater.2019, 9, 1803889.

    Google Scholar 

  94. [94]

    Pan, R. R.; Liu, J.; Li, Y. M.; Li, X. Y.; Zhang, E. H.; Di, Q. M.; Su, M. Y.; Zhang, J. T. Electronic doping-enabled transition from n- to p-type conductivity over Au@CdS core-shell nanocrystals toward unassisted photoelectrochemical water splitting. J. Mater. Chem. A2019, 7, 23038–23045.

    CAS  Google Scholar 

  95. [95]

    Shen, R. G.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem2019, 5, 2099–2110.

    CAS  Google Scholar 

  96. [96]

    Ge, J. J.; He, D. S.; Chen, W. X.; Ju, H. X.; Zhang, H.; Chao, T. T.; Wang, X. Q.; You, R.; Lin, Y.; Wang, Y. et al. Atomically dispersed Ru on ultrathin Pd nanoribbons. J. Am. Chem. Soc.2016, 138, 13850–13853.

    CAS  Google Scholar 

  97. [97]

    Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater.2012, 11, 49–52.

    Google Scholar 

  98. [98]

    Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal.2015, 5, 3717–3725.

    CAS  Google Scholar 

  99. [99]

    Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun.2018, 9, 4958.

    Google Scholar 

  100. [100]

    Liu, J. L.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.; Therrien, A. J.; Williams, C. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc.2016, 138, 6396–6399.

    CAS  Google Scholar 

  101. [101]

    Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal.2019, 2, 304–313.

    CAS  Google Scholar 

  102. [102]

    Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater.2016, 28, 2540–2546.

    CAS  Google Scholar 

  103. [103]

    Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci.2016, 9, 3736–3745.

    CAS  Google Scholar 

  104. [104]

    Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed.2019, 58, 14871–14876.

    CAS  Google Scholar 

  105. [105]

    Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed.2018, 57, 1944–1948.

    CAS  Google Scholar 

  106. [106]

    Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun.2019, 10, 4290.

    Google Scholar 

  107. [107]

    Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal.2018, 1, 781–786.

    CAS  Google Scholar 

  108. [108]

    Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol.2018, 13, 856–861.

    CAS  Google Scholar 

  109. [109]

    Ke, J.; Zhu, W.; Jiang, Y. Y.; Si, R.; Wang, Y. J.; Li, S. C.; Jin, C. H.; Liu, H. C.; Song, W. G.; Yan, C. H. et al. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal.2015, 5, 5164–5173.

    CAS  Google Scholar 

  110. [110]

    Nan, B.; Hu, X. C.; Wang, X.; Jia, C. J.; Ma, C.; Li, M. X.; Si, R. Effects of multiple platinum species on catalytic reactivity distinguished by electron microscopy and X-ray absorption spectroscopy techniques. J. Phys. Chem. C2017, 121, 25805–25817.

    CAS  Google Scholar 

  111. [111]

    Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun.2019, 10, 4500.

    Google Scholar 

  112. [112]

    Ye, T. N.; Xiao, Z. W.; Li, J.; Gong, Y. T.; Abe, H.; Niwa, Y.; Sasase, M.; Kitano, M.; Hosono, H. Stable single platinum atoms trapped in sub-nanometer cavities in 12CaO·7Al2O3 for chemoselective hydrogenation of nitroarenes. Nat. Commun.2020, 11, 1020.

    CAS  Google Scholar 

  113. [113]

    Shen, G. Q.; Zhang, R. R.; Pan, L.; Hou, F.; Zhao, Y. J.; Shen, Z. Y.; Mi, W. B.; Shi, C. X.; Wang, Q. F.; Zhang, X. W. et al. Regulating the spin state of FeIII by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed.2020, 59, 2313–2317.

    CAS  Google Scholar 

  114. [114]

    Zhao, G. F.; Yang, F.; Chen, Z. J.; Liu, Q. F.; Ji, Y. J.; Zhang, Y.; Niu, Z. Q.; Mao, J. J.; Bao, X. H.; Hu, P. J. et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nat. Commun.2017, 8, 14039.

    Google Scholar 

  115. [115]

    Lei, Y.; Liu, B.; Lu, J. L.; Libera, J. A.; Greeley, J. P.; Elam, J. W. Effects of chlorine in titanium oxide on palladium atomic layer deposition. J. Phys. Chem. C2014, 118, 22611–22619.

    CAS  Google Scholar 

  116. [116]

    Yin, X.; Utetiwabo, W.; Sun, S. H.; Lian, Y. M.; Chen, R. J.; Yang, W. Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. J. Catal.2019, 374, 43–50.

    CAS  Google Scholar 

  117. [117]

    Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc.2017, 139, 17281–17284.

    CAS  Google Scholar 

  118. [118]

    Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed.2019, 58, 2622–2626.

    CAS  Google Scholar 

  119. [119]

    Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun.2019, 10, 4936.

    Google Scholar 

  120. [120]

    Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc.2019, 141, 14190–14199.

    CAS  Google Scholar 

  121. [121]

    Nguyen, L.; Zhang, S. R.; Tan, L.; Tang, Y.; Liu, J. Y.; Tao, F. F. Ir1Znn bimetallic site for efficient production of hydrogen from methanol. ACS Sustainable Chem. Eng.2019, 7, 18793–18800.

    Google Scholar 

  122. [122]

    Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater.2019, 31, 1905622.

    CAS  Google Scholar 

  123. [123]

    Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. G.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res.2018, 11, 6260–6269.

    CAS  Google Scholar 

  124. [124]

    Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc.2019, 141, 6254–6262.

    CAS  Google Scholar 

  125. [125]

    Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun.2018, 9, 5422.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFA0702003 and 2016YFA0202801), the National Natural Science Foundation of China (Nos. 51631001, 51872030, 21890383, 21671117, 21871159, 21901135, 51702016, and 51501010), Beijing Institute of Technology Research Fund Program for Young Scholars, and Beijing Municipal Science & Technology Commission (No. Z191100007219003).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hongpan Rong or Dingsheng Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Rong, H., Zhang, J. et al. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 13, 1842–1855 (2020). https://doi.org/10.1007/s12274-020-2755-3

Download citation

Keywords

  • single-atom catalysts
  • coordination environment
  • catalytic performance
  • energy conversion