Skip to main content

Carbon nanotube-based electrodes for flexible supercapacitors

Abstract

Flexible supercapacitors (SCs) have attracted increasing attention as the power supply unit for portable/wearable electronics. Carbon nanotubes (CNTs) are promising candidate materials for flexible SC electrodes because of their outstanding mechanical property, high electrical conductivity, large surface area, and functionability. CNTs can assemble into various macroscopic materials with different dimensions. In this review, flexible CNT assemblies including 1D fibers, 2D films, and 3D aerogels and sponges are introduced with a focus on the design strategies and fabrication techniques. The recent developments and state-of-the-art applications of such structures as electrodes in flexible SCs are summarized based on device configurations including sandwiched, interdigital in-plane, and cable-type configurations. The flexible CNT-based electrodes have shown great advantages in bendability, stretchability and/or compressibility, as well as a long cycle lifetime. The current challenges and future research opportunities in this field are also discussed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Shao, Y. L.; El-Kady, M. F.; Wang, L. J.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Mousavi, M. F.; Kaner, R. B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev.2015, 44, 3639–3665.

    CAS  Google Scholar 

  2. [2]

    Ko, Y.; Kwon, M.; Bae, W. K.; Lee, B.; Lee, S. W.; Cho, J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun.2017, 8, 536.

    Google Scholar 

  3. [3]

    Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res.2019, 12, 1978–1987.

    CAS  Google Scholar 

  4. [4]

    Li, W. W.; Gao, F. X.; Wang, X. Q.; Zhang, N.; Ma, M. M. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem., Int. Ed.2016, 55, 9196–9201.

    CAS  Google Scholar 

  5. [5]

    Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res.2017, 10, 1524–1544.

    Google Scholar 

  6. [6]

    Liu, L. L.; Niu, Z. Q.; Chen, J. Flexible supercapacitors based on carbon nanotubes. Chin. Chem. Lett.2018, 29, 571–581.

    CAS  Google Scholar 

  7. [7]

    Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortiere, A.; Daffos, B.; Taberna, P. L. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science2016, 351, 691–695.

    CAS  Google Scholar 

  8. [8]

    El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science2012, 335, 1326–1330.

    CAS  Google Scholar 

  9. [9]

    Zhu, S.; Li, Y. T.; Zhu, H. Y.; Ni, J. F.; Li, Y. Pencil-drawing skinmountable micro-supercapacitors. Small2019, 15, 1804037.

    Google Scholar 

  10. [10]

    Fu, Y. P.; Cai, X.; Wu, H. W.; Lv, Z. B.; Hou, S. C.; Peng, M.; Yu, X.; Zou, D. C. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater.2012, 24, 5713–5718.

    CAS  Google Scholar 

  11. [11]

    Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P. L.; Grey, C. P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy2016, 1, 16070.

    CAS  Google Scholar 

  12. [12]

    Zhu, S.; Wang, Z. D.; Huang, F. Z.; Zhang, H.; Li, S. K. Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A2017, 5, 9960–9969.

    CAS  Google Scholar 

  13. [13]

    El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater.2016, 1, 16033.

    CAS  Google Scholar 

  14. [14]

    Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev.2015, 44, 1777–1790.

    CAS  Google Scholar 

  15. [15]

    Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun.2013, 4, 2431.

    Google Scholar 

  16. [16]

    Zuo, W. H.; Li, R. Z.; Zhou, C.; Li, Y. Y.; Xia, J. L.; Liu, J. P. Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci.2017, 4, 1600539.

    Google Scholar 

  17. [17]

    Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A2017, 5, 12653–12672.

    CAS  Google Scholar 

  18. [18]

    Ni, J. F.; Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater.2016, 6, 1600278.

    Google Scholar 

  19. [19]

    Zhu, S.; Wu, M.; Ge, M. H.; Zhang, H.; Li, S. K.; Li, C. H. Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors. J. Power Sources2016, 306, 593–601.

    CAS  Google Scholar 

  20. [20]

    Sun, G. Z.; Zhang, X.; Lin, R. Z.; Yang, J.; Zhang, H.; Chen, P. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem., Int. Ed.2015, 54, 4651–4656.

    CAS  Google Scholar 

  21. [21]

    Zhou, Q. Y.; Fan, T. W.; Li, Y. Y.; Chen, D. C.; Liu, S. L.; Li, X. Hollow–structure NiCo hydroxide/carbon nanotube composite for high–performance supercapacitors. J. Power Sources2019, 426, 111–115.

    CAS  Google Scholar 

  22. [22]

    Zhou, Y. S.; Zhu, Y. C.; Xu, B. S.; Zhang, X. J. High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors. Chem. Commun.2019, 55, 4083–4086.

    CAS  Google Scholar 

  23. [23]

    Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Supertough carbon-nanotube fibres. Nature2003, 423, 703.

    CAS  Google Scholar 

  24. [24]

    Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater.2019, 31, 1903675.

    Google Scholar 

  25. [25]

    Ni, J. F.; Wang, G. B.; Yang, J.; Gao, D. L.; Chen, J. T.; Gao, L. J., Li, Y. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability. J. Power Sources2014, 247, 90–94.

    CAS  Google Scholar 

  26. [26]

    Jin, Q.; Jiang, S.; Zhao, Y.; Wang, D.; Qiu, J. H.; Tang, D. M.; Tan, J.; Sun, D. M.; Hou, P. X.; Chen, X. Q. et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater.2019, 18, 62–68.

    CAS  Google Scholar 

  27. [27]

    Headrick, R. J.; Tsentalovich, D. E.; Berdegué, J.; Bengio, E. A.; Liberman, L.; Kleinerman, O.; Lucas, M. S.; Talmon, Y.; Pasquali, M. Structure-property relations in carbon nanotube fibers by downscaling solution processing. Adv. Mater.2018, 30, 1704482.

    Google Scholar 

  28. [28]

    Lu, Z.; Raad, R.; Safaei, F.; Xi, J. T.; Liu, Z. F.; Foroughi, J. Carbon nanotube based fiber supercapacitor as wearable energy storage. Front. Mater.2019, 6, 138.

    Google Scholar 

  29. [29]

    Zubair, A.; Wang, X.; Mirri, F.; Tsentalovich, D. E.; Fujimura, N.; Suzuki, D.; Soundarapandian, K. P.; Kawano, Y.; Pasquali, M.; Kono, J. Carbon nanotube woven textile photodetector. Phys. Rev. Mater.2018, 2, 015201.

    CAS  Google Scholar 

  30. [30]

    Vigolo, B.; Pénicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science2000, 290, 1331–1334.

    CAS  Google Scholar 

  31. [31]

    Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature2002, 419, 801.

    CAS  Google Scholar 

  32. [32]

    Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science2004, 306, 1358–1361.

    CAS  Google Scholar 

  33. [33]

    Zhang, Y.; Bai, W. Y.; Cheng, X. L.; Ren, J.; Weng, W.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Peng, H. S. Flexible and stretchable lithiumion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem., Int. Ed.2014, 53, 14564–14568.

    CAS  Google Scholar 

  34. [34]

    Han, B. J.; Liu, T.; Huang, Z. J.; Chen, D. M.; Zhu, Y. S.; Zhou, C. Y.; Li, Y. S.; Yin, Y. H.; Wu, Z. P. Preparation of flexible carbon nanotube ropes for low-voltage heat generator. Appl. Phys. Lett.2017, 110, 103902.

    Google Scholar 

  35. [35]

    Ryu, S.; Lee, P.; Chou, J. B.; Xu, R. Z.; Zhao, R.; John, A.; Hart, A. J.; Kim, S. G. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano2015, 9, 5929–5936.

    CAS  Google Scholar 

  36. [36]

    Zhou, J.; Xu, X. Z.; Xin, Y. Y.; Lubineau, G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater.2018, 28, 1705591.

    Google Scholar 

  37. [37]

    Yu, J. L.; Wang, L. Y.; Lai, X. H.; Pei, S. P.; Zhuang, Z. B.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Lu, W. B.; Byun, J. H. et al. A durability study of carbon nanotube fiber based stretchable electronic devices under cyclic deformation. Carbon2015, 94, 352–361.

    CAS  Google Scholar 

  38. [38]

    Sun, Y. P.; Li, S. H.; Shang, Y. Y.; Hou, S. Y.; Chang, S. L.; Shi, E. Z.; Cao, A. Y. Highly stretchable carbon nanotube fibers with tunable and stable light emission. Adv. Eng. Mater.2019, 21, 1801126.

    Google Scholar 

  39. [39]

    Li, M. Y.; Zu, M.; Yu, J. S.; Cheng, H. F.; Li, Q. W. Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small2017, 13, 1602994.

    Google Scholar 

  40. [40]

    Zhu, S.; Li, Y. Carbon-metal oxide nanocomposites as lithium-sulfur battery cathodes. Funct. Mater. Lett.2018, 11, 1830007.

    CAS  Google Scholar 

  41. [41]

    Han, Y. C.; Chen, P. S.; Xia, Y. F.; Huang, S. Q.; Chen, W. X.; Lu, W. Y. Electrodeposition of polypyrrole on He plasma etched carbon nanotube films for electrodes of flexible all-solid-state supercapacitor. J. Solid State Electrochem.2019, 23, 1553–1562.

    CAS  Google Scholar 

  42. [42]

    Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano2010, 4, 5382–5388.

    CAS  Google Scholar 

  43. [43]

    Liu, Q. F.; Fujigaya, T.; Cheng, H. M.; Nakashima, N. Free-standing highly conductive transparent ultrathin single-walled carbon nanotube films. J. Am. Chem. Soc.2010, 132, 16581–16586.

    CAS  Google Scholar 

  44. [44]

    Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater.2009, 21, 29–53.

    CAS  Google Scholar 

  45. [45]

    Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett.2010, 10, 4349–4355.

    CAS  Google Scholar 

  46. [46]

    Ma, W. J.; Song, L.; Yang, R.; Zhang, T. H.; Zhao, Y. C.; Sun, L. F.; Ren, Y.; Liu, D. F.; Liu, L. F.; Shen, J. et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett.2007, 7, 2307–2311.

    CAS  Google Scholar 

  47. [47]

    Jiang, S.; Hou, P. X.; Chen, M. L.; Wang, B. W.; Sun, D. M.; Tang, D. M.; Jin, Q.; Guo, Q. X.; Zhang, D. D.; Du, J. H. et al. Ultrahighperformance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv.2018, 4, eaap9264.

    Google Scholar 

  48. [48]

    Zheng, M. B.; Chi, Y.; Hu, Q.; Tang, H.; Jiang, X. L.; Zhang, L.; Zhang, S. T.; Pang, H.; Xu, Q. Carbon nanotube-based materials for lithium–sulfur batteries. J. Mater. Chem. A2019, 7, 17204–17241.

    CAS  Google Scholar 

  49. [49]

    Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater.2011, 23, 1154–1161.

    CAS  Google Scholar 

  50. [50]

    Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett.2008, 8, 4539–4545.

    CAS  Google Scholar 

  51. [51]

    Jin, X.; Tan, H. X.; Wu, Z. P.; Liang, J. C.; Miao, W. T.; Lian, C. S.; Wang, J. T.; Liu, K.; Wei, H. M.; Feng, C. et al. Continuous, ultralightweight, and multipurpose super-aligned carbon nanotube tapes viable over a wide range of temperatures. Nano Lett.2019, 19, 6756–6764.

    CAS  Google Scholar 

  52. [52]

    Cao, C. Y.; Zhou, Y. H.; Ubnoske, S.; Zang, J. F.; Cao, Y. T.; Henry, P.; Parker, C. B.; Glass, J. T. Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater.2019, 9, 1900618.

    Google Scholar 

  53. [53]

    Yin, Y. L.; Xu, Y.; Zhou, Y.; Yan, Y.; Zhan, K.; Yang, J. H.; Li, J. Q.; Zhao, B. Millimeter-long vertically aligned carbon-nanotube-supported Co3O4 composite electrode for high-performance asymmetric supercapacitor. ChemElectroChem2018, 5, 1394–1400.

    CAS  Google Scholar 

  54. [54]

    Wang, Y. S.; Wang, Z. P.; Chen, Y. J.; Zhang, H.; Yousaf, M.; Wu, H. S.; Zou, M. C.; Cao, A. Y.; Han, R. P. S. Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater.2018, 30, 1802074.

    Google Scholar 

  55. [55]

    Ni, J. F.; Sun, M. L.; Li, L. Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv. Mater.2019, 31, 1902603.

    CAS  Google Scholar 

  56. [56]

    Ni, J. F.; Li, L. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater.2018, 28, 1704880.

    Google Scholar 

  57. [57]

    Guo, F.; Jiang, Y. Q.; Xu, Z.; Xiao, Y. H.; Fang, B.; Liu, Y. J.; Gao, W. W.; Zhao, P.; Wang, H. T.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun.2018, 9, 881.

    Google Scholar 

  58. [58]

    Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.; Yodh, A. G. Carbon nanotube aerogels. Adv. Mater.2007, 19, 661–664.

    CAS  Google Scholar 

  59. [59]

    Van Aken, K. L.; Pérez, C. R.; Oh, Y.; Beidaghi, M.; Jeong, Y. J.; Islam, M. F.; Gogotsi, Y. High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy2015, 15, 662–669.

    Google Scholar 

  60. [60]

    Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol.2012, 7, 562–566.

    CAS  Google Scholar 

  61. [61]

    Pan, Z. H.; Liu, M. N.; Yang, J.; Qiu, Y. C.; Li, W. F.; Xu, Y.; Zhang, X. Y.; Zhang, Y. G. High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible allsolid- state asymmetric supercapacitors. Adv. Funct. Mater.2017, 27, 1701122.

    Google Scholar 

  62. [62]

    Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater.2010, 22, 617–621.

    CAS  Google Scholar 

  63. [63]

    Zhong, J.; Yang, Z. Y.; Mukherjee, R.; Thomas, A. V.; Zhu, K.; Sun, P. Z.; Lian, J.; Zhu, H. W.; Koratkar, N. Carbon nanotube sponges as conductive networks for supercapacitor devices. Nano Energy2013, 2, 1025–1030.

    CAS  Google Scholar 

  64. [64]

    Cao, X.; He, J.; Li, H.; Kang, L. P.; He, X. X.; Sun, J.; Jiang, R. B.; Xu, H.; Lei, Z. B.; Liu, Z. H. CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor. Small2018, 14, 1800998.

    Google Scholar 

  65. [65]

    Wang, Y. S.; Ma, Z. M.; Chen, Y. J.; Zou, M. C.; Yousaf, M.; Yang, Y. B.; Yang, L. S.; Cao, A. Y.; Han, R. P. S. Controlled synthesis of core-shell carbon@MoS2 nanotube sponges as high-performance battery electrodes. Adv. Mater.2016, 28, 10175–10181.

    CAS  Google Scholar 

  66. [66]

    Wu, P.; Cheng, S.; Yang, L. F.; Lin, Z. Q.; Gui, X. C.; Ou, X.; Zhou, J.; Yao, M. H.; Wang, M. K.; Zhu, Y. Y. et al. Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl. Mater. Interfaces2016, 8, 23721–23728.

    CAS  Google Scholar 

  67. [67]

    Chen, Y. J.; Wang, Y. S.; Wang, Z. P.; Zou, M. C.; Zhang, H.; Zhao, W. Q.; Yousaf, M.; Yang, L. S.; Cao, A. Y.; Han, R. P. S. Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 Sponge. Adv. Energy Mater.2018, 8, 1702981.

    Google Scholar 

  68. [68]

    Xie, X.; Ye, M.; Hu, L. B.; Liu, N.; McDonough, J. R.; Chen, W.; Alshareef, H. N.; Criddle, C. S.; Cui, Y. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci.2012, 5, 5265–5270.

    CAS  Google Scholar 

  69. [69]

    Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett.2009, 9, 1872–1876.

    CAS  Google Scholar 

  70. [70]

    Vincent, C. A. Polymer electrolytes. Prog. Solid State Chem.1987, 17, 145–261.

    CAS  Google Scholar 

  71. [71]

    Nohara, S.; Wada, H.; Furukawa, N.; Inoue, H.; Morita, M.; Iwakura, C. Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte. Electrochim. Acta2003, 48, 749–753.

    CAS  Google Scholar 

  72. [72]

    Kanninen, P.; Luong, N. D.; Sinh, L. H.; Anoshkin, I. V.; Tsapenko, A.; Seppälä, J.; Nasibulin, A. G.; Kallio, T. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology2016, 27, 235403.

    Google Scholar 

  73. [73]

    Jiang, Y. C.; Wu, Z. Y.; Jiang, L.; Pan, Z. C.; Yang, P. Y.; Tian, W. C.; Hu, L. F. Freestanding CoSeO3•H2O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale2018, 10, 12003–12010.

    CAS  Google Scholar 

  74. [74]

    Wang, Q.; Wang, H. X.; Du, P. C.; Liu, J. L.; Liu, D.; Liu, P. Porous polylactic acid/carbon nanotubes/polyaniline composite film as flexible free-standing electrode for supercapacitors. Electrochim. Acta2019, 294, 312–324.

    CAS  Google Scholar 

  75. [75]

    Jiang, H. F.; Cai, X. Y.; Qian, Y.; Zhang, C. Y.; Zhou, L. J.; Liu, W. L.; Li, B. S.; Lai, L. F.; Huang, W. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. J. Mater. Chem. A2017, 5, 23727–23736.

    CAS  Google Scholar 

  76. [76]

    Hou, X. Y.; Peng, T.; Cheng, J. B.; Yu, Q. H.; Luo, R. J.; Lu, Y.; Liu, X. M.; Kim, J. K.; He, J.; Luo, Y. S. Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res.2017, 10, 2570–2583.

    CAS  Google Scholar 

  77. [77]

    Zeng, S.; Chen, H. Y.; Cai, F.; Kang, Y. R.; Chen, M. H.; Li, Q. W. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A2015, 3, 23864–23870.

    CAS  Google Scholar 

  78. [78]

    Zhou, Y.; Wang, X. X.; Acauan, L.; Kalfon-Cohen, E.; Ni, X. C.; Stein, Y.; Gleason, K. K.; Wardle, B. L. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater.2019, 31, 1901916.

    Google Scholar 

  79. [79]

    Chen, X. L.; Lin, H. J.; Chen, P. N.; Guan, G. Z.; Deng, J.; Peng, H. S. Smart, stretchable supercapacitors. Adv. Mater.2014, 26, 4444–4449.

    CAS  Google Scholar 

  80. [80]

    Yu, M. H.; Zhang, Y. F.; Zeng, Y. X.; Balogun, M. S.; Mai, K. S.; Zhang, Z. S.; Lu, X. H.; Tong, Y. X. Water surface assisted synthesis of large-cale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater.2014, 26, 4724–4729.

    CAS  Google Scholar 

  81. [81]

    Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano2013, 7, 7975–7982.

    CAS  Google Scholar 

  82. [82]

    Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater.2013, 25, 1058–1064.

    CAS  Google Scholar 

  83. [83]

    Lv, T.; Yao, Y.; Li, N.; Chen, T. Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew. Chem., Int. Ed.2016, 55, 9191–9195.

    CAS  Google Scholar 

  84. [84]

    Zhang, Z. T.; Wang, L.; Li, Y. M.; Wang, Y. H.; Zhang, J.; Guan, G. Z.; Pan, Z. Y.; Zheng, G. F.; Peng, H. S. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv. Energy Mater.2017, 7, 1601814.

    Google Scholar 

  85. [85]

    He, X.; Yang, W. Y.; Mao, X. L.; Xu, L.; Zhou, Y. J.; Chen, Y.; Zhao, Y. T.; Yang, Y. J.; Xu, J. H. All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes. J. Power Sources2018, 376, 138–146.

    CAS  Google Scholar 

  86. [86]

    Wang, H. C.; Liu, X. P.; Zhang, B. C.; Yang, J. B.; Zhang, Z. J.; Yue, R. R.; Wang, Z. W. Highly compressible supercapacitor based on carbon nanotubes-reinforced sponge electrode. J. Alloys Compd.2019, 786, 995–1004.

    CAS  Google Scholar 

  87. [87]

    Zhang, Y. Y.; Zhen, Z.; Zhang, Z. L.; Lao, J. C.; Wei, J. Q.; Wang, K. L.; Kang, F. Y.; Zhu, H. W. In-situ synthesis of carbon nanotube/ graphene composite sponge and its application as compressible supercapacitor electrode. Electrochim. Acta2015, 157, 134–141.

    CAS  Google Scholar 

  88. [88]

    Tong, H.; Yue, S. H.; Lu, L.; Jin, F. Q.; Han, Q. W.; Zhang, X. G.; Liu, J. A binder-free NiCo2O4 nanosheet/3D elastic N-doped hollow carbon nanotube sponge electrode with high volumetric and gravimetric capacitances for asymmetric supercapacitors. Nanoscale2017, 9, 16826–16835.

    CAS  Google Scholar 

  89. [89]

    Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater.2015, 27, 6002–6008.

    CAS  Google Scholar 

  90. [90]

    Wang, X.; Li, H.; Li, H.; Lin S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Nanoscale2019, 11, 8138–8149.

    Google Scholar 

  91. [91]

    Li, X. M.; Shao, J. Y.; Kim, S. K.; Yao, C. C.; Wang, J. J.; Miao, Y. R.; Zheng, Q. Y.; Sun, P. C.; Zhang, R. Y.; Braun, P. V. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat. Commun.2018, 9, 2578.

    Google Scholar 

  92. [92]

    Guo, R. S.; Chen, J. T.; Yang, B. J.; Liu, L. Y.; Su, L. J.; Shen, B. S.; Yan, X. B. In-plane micro-supercapacitors for an integrated device on one piece of paper. Adv. Funct. Mater.2017, 27, 1702394.

    Google Scholar 

  93. [93]

    Liu, Z. Y.; Wu, Z. S.; Yang, S.; Dong, R. H.; Feng, X. L.; Müllen, K. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater.2016, 28, 2217–2222.

    CAS  Google Scholar 

  94. [94]

    Du, J. W.; Mu, X. M.; Zhao, Y. R.; Zhang, Y. X.; Zhang, S. M.; Huang, B. Y.; Sheng, Y. Z.; Xie, Y. Z.; Zhang, Z. X.; Xie, E. Q. Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors. Nanoscale2019, 11, 14392–14399.

    CAS  Google Scholar 

  95. [95]

    Liu, N. S.; Gao, Y. H. Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture. Small2017, 13, 1701989.

    Google Scholar 

  96. [96]

    Pu, X.; Liu, M. M.; Li, L. X.; Han, S. C.; Li, X. L.; Jiang, C. Y.; Du, C. H.; Luo, J. J.; Hu, W. G.; Wang, Z. L. Wearable textile-based in-plane microsupercapacitors. Adv. Energy Mater.2016, 6, 1601254.

    Google Scholar 

  97. [97]

    Li, J. H.; Shi, Q. W.; Shao, Y. L.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Mater.2019, 16, 212–219.

    Google Scholar 

  98. [98]

    Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J. Mater. Chem. A2014, 2, 8288–8293.

    CAS  Google Scholar 

  99. [99]

    Zhang, L. D.; Liu, L. J.; Liu, C. F.; Li, X.; Liu, F. S.; Zhao, W. Q.; Wang, S.; Wu, F. M.; Zhang, G. Y. Photolithographic fabrication of graphene-based all-solid-state planar on-chip microsupercapacitors with ultrahigh power characteristics. J. Appl. Phys.2019, 126, 164308.

    Google Scholar 

  100. [100]

    Yang, Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res.2016, 9, 2510–2519.

    CAS  Google Scholar 

  101. [101]

    Yin, Y. J.; Wang, X. F.; You, Z. Integration of ruthenium oxide-carbon nanotube composites with three-dimensional interdigitated microelectrodes for the creation of on-chip supercapacitors. Int. J. Electrochem. Sci.2017, 12, 3883–3906.

    CAS  Google Scholar 

  102. [102]

    Peng, Z. W.; Lin, J.; Ye, R. Q.; Samuel, E. L. G.; Tour, J. M. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces2015, 7, 3414–3419.

    CAS  Google Scholar 

  103. [103]

    Chen, Y. J.; Xu, B. G.; Xu, J. T.; Wen, J. F.; Hua, T.; Kan, C. W. Graphene-based in-planar supercapacitors by a novel laser-scribing, in-situ reduction and transfer-printed method on flexible substrates. J. Power Sources2019, 420, 82–87.

    CAS  Google Scholar 

  104. [104]

    Shi, L.; Wang, Y.; Zou, P. C.; Wang, X. Y.; Wu, D.; Wang, R. H.; Yang, C. Laser processed micro-supercapacitors based on carbon nanotubes/manganese dioxide nanosheets composite with excellent electrochemical performance and aesthetic property. Chin. Chem. Lett.2018, 29, 592–595.

    CAS  Google Scholar 

  105. [105]

    Mao, X. L.; Xu, J. H.; He, X.; Yang, W. Y.; Yang, Y. J.; Xu, L.; Zhao, Y. T.; Zhou, Y. J. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes. Appl. Surf. Sci.2018, 435, 1228–1236.

    CAS  Google Scholar 

  106. [106]

    Chen, B. L.; Jiang, Y. Z.; Tang, X. H.; Pan, Y. Y.; Hu, S. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces2017, 9, 28433–28440.

    CAS  Google Scholar 

  107. [107]

    Choi, K. H.; Yoo, J.; Lee, C. K.; Lee, S. Y. All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ. Sci.2016, 9, 2812–2821.

    CAS  Google Scholar 

  108. [108]

    Yu, W.; Zhou, H.; Li, B. Q.; Ding, S. J. 3D printing of carbon nanotubes-based microsupercapacitors. ACS Appl. Mater. Interfaces2017, 9, 4597–4604.

    CAS  Google Scholar 

  109. [109]

    Kim, S. K.; Koo, H. J.; Lee, A.; Braun, P. V. Selective wettinginduced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater.2014, 26, 5108–5112.

    CAS  Google Scholar 

  110. [110]

    Wang, C. L.; Wu, X.; Xu, H. J.; Zhu, Y. J.; Liang, F.; Luo, C.; Xia, Y.; Xie, X. Y.; Zhang, J.; Duan, C. G. VSe2/carbon-nanotube compound for all solid-state flexible in-plane supercapacitor. Appl. Phys. Lett.2019, 114, 023902.

    Google Scholar 

  111. [111]

    Nie, B. B.; Li, X. M.; Shao, J. Y.; Li, C. M.; Sun, P. C.; Wang, Y. C.; Tian, H. M.; Wang, C. H.; Chen, X. L. Scalable fabrication of highperformance micro-supercapacitors by embedding thick interdigital microelectrodes into microcavities. Nanoscale2019, 11, 19772–19782.

    CAS  Google Scholar 

  112. [112]

    Xi, S. P.; Kang, Y. R.; Qu, S. X.; Han, S. S. Flexible supercapacitors on chips with interdigital carbon nanotube fiber electrodes. Mater. Lett.2016, 175, 126–130.

    CAS  Google Scholar 

  113. [113]

    Lee, S. Y.; Choi, K. H.; Choi, W. S.; Kwon, Y. H.; Jung, H. R.; Shin, H. C.; Kim, J. Y. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ. Sci.2013, 6, 2414–2423.

    CAS  Google Scholar 

  114. [114]

    Vellacheri, R.; Zhao, H. P.; Mühlstädt, M.; Al-Haddad, A.; Jandt, K. D.; Lei, Y. Rationally engineered electrodes for a high-performance solid-state cable-type supercapacitor. Adv. Funct. Mater.2017, 27, 1606696.

    Google Scholar 

  115. [115]

    Chen, Y. J.; Xu, B. G.; Wen, J. F.; Gong, J. L.; Hua, T.; Kan, C. W.; Deng, J. W. Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes. Small2018, 14, 1704373.

    Google Scholar 

  116. [116]

    Pu, X.; Li, L. X.; Liu, M. M.; Jiang, C. Y.; Du, C. H.; Zhao, Z. F.; Hu, W. G.; Wang, Z. L. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater.2016, 28, 98–105.

    CAS  Google Scholar 

  117. [117]

    Liu, L. B.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. J. Wearable energydense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat. Commun.2015, 6, 7260.

    CAS  Google Scholar 

  118. [118]

    Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science2013, 339, 182–186.

    CAS  Google Scholar 

  119. [119]

    Zhang, X.; Li, Q.; Holesinger, T. G.; Arendt, P. N.; Huang, J.; Kirven, P. D.; Clapp, T. G.; DePaula, R. F.; Liao, X.; Zhao, Y. et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater.2007, 19, 4198–4201.

    CAS  Google Scholar 

  120. [120]

    Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed.2011, 50, 1815–1819.

    CAS  Google Scholar 

  121. [121]

    Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater.2020, 32, 1902670.

    CAS  Google Scholar 

  122. [122]

    Ren, J.; Li, L.; Chen, C.; Chen, X. L.; Cai, Z. B.; Qiu, L. B.; Wang, Y. G.; Zhu, X. R.; Peng, H. S. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater.2013, 25, 1155–1159.

    CAS  Google Scholar 

  123. [123]

    Shang, Y. Y.; Wang, C. H.; He, X. D.; Li, J. J.; Peng, Q. Y.; Shi, E. Z.; Wang, R. G.; Du, S. Y.; Cao, A. Y.; Li, Y. B. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy2015, 12, 401–409.

    CAS  Google Scholar 

  124. [124]

    Sun, H.; You, X.; Deng, J.; Chen, X. L.; Yang, Z. B.; Ren, J.; Peng, H. S. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater.2014, 26, 2868–2873.

    CAS  Google Scholar 

  125. [125]

    Ma, Y. W.; Li, P.; Sedloff, J. W.; Zhang, X.; Zhang, H. B.; Liu, J. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano2015, 9, 1352–1359.

    CAS  Google Scholar 

  126. [126]

    Wang, Q. F.; Wu, Y. L.; Li, T.; Zhang, D. H.; Miao, M. H.; Zhang, A. Q. High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires. J. Mater. Chem. A2016, 4, 3828–3834.

    CAS  Google Scholar 

  127. [127]

    Su, F. H.; Lv, X. M.; Miao, M. H. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small2015, 11, 854–861.

    CAS  Google Scholar 

  128. [128]

    Liu, J. H.; Xu, X. Y.; Lu, W. B.; Xiong, X. B.; Ouyang, X.; Zhao, C. H.; Wang, F.; Qin, S. Y.; Hong, J. L.; Tang, J. N. et al. A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double coresheathed structure. Electrochim. Acta2018, 283, 366–373.

    CAS  Google Scholar 

  129. [129]

    Choi, C.; Sim, H. J.; Spinks, G. M.; Lepró, X.; Baughman, R. H.; Kim, S. J. Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor. Adv. Energy Mater.2016, 6, 1502119.

    Google Scholar 

  130. [130]

    Wang, H. M.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Xia, K. L.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res.2018, 11, 2347–2356.

    CAS  Google Scholar 

  131. [131]

    Zhu, S.; Zhang, H.; Chen, P.; Nie, L. H.; Li, C. H.; Li, S. K. Selfassembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO2 nanobelts for high performance supercapacitors. J. Mater. Chem. A2015, 3, 1540–1548.

    CAS  Google Scholar 

  132. [132]

    Zhang, H. H.; Wei, J.; Yan, Y.; Guo, Q. J.; Xie, L. Q.; Yang, Z. C.; He, J.; Qi, W.; Cao, Z. S.; Zhao, X. H. et al. Facile and scalable fabrication of MnO2 nanocrystallines and enhanced electrochemical performance of MnO2/MoS2 inner heterojunction structure for supercapacitor application. J. Power Sources2020, 450, 227616.

    CAS  Google Scholar 

  133. [133]

    Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater.2014, 26, 2059–2065.

    CAS  Google Scholar 

  134. [134]

    Jeong, J. H.; Park, J. W.; Lee, D. W.; Baughman, R. H.; Kim, S. J. Electrodeposition of α-MnO2/γ-MnO2 on carbon nanotube for yarn supercapacitor. Sci. Rep.2019, 9, 11271.

    Google Scholar 

  135. [135]

    Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci.2016, 3, 1500286.

    Google Scholar 

  136. [136]

    Chaudhari, N. K.; Jin, H.; Kim, B.; San Baek, D.; Joo, S. H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A2017, 5, 24564–24579.

    CAS  Google Scholar 

  137. [137]

    Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev.2019, 48, 72–133.

    CAS  Google Scholar 

  138. [138]

    Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/ MXene composites for high performance supercapacitors. Nano Res.2020, 13, 196–202.

    CAS  Google Scholar 

  139. [139]

    Wang, Z. Y.; Qin, S.; Seyedin, S.; Zhang, J. Z.; Wang, J. T.; Levitt, A.; Li, N.; Haines, C.; Ovalle-Robles, R.; Lei, W. W. et al. Highperformance biscrolled MXene/carbon nanotube yarn supercapacitors. Small2018, 14, 1802225.

    Google Scholar 

  140. [140]

    Park, J. W.; Lee, D. Y.; Kim, H.; Hyeon, J. S.; De Andrade, M. J.; Baughman, R. H.; Kim, S. J. Highly loaded MXene/carbon nanotube yarn electrodes for improved asymmetric supercapacitor performance. MRS Commun.2019, 9, 114–121.

    CAS  Google Scholar 

  141. [141]

    Cheng, H. H.; Dong, Z. L.; Hu, C. G.; Zhao, Y.; Hu, Y.; Qu, L. T.; Chen, N.; Dai, L. M. Textile electrodes woven by carbon nanotubegraphene hybrid fibers for flexible electrochemical capacitors. Nanoscale2013, 5, 3428–3434.

    CAS  Google Scholar 

  142. [142]

    Liu, N. S.; Ma, W. Z.; Tao, J. Y.; Zhang, X. H.; Su, J.; Li, L. Y.; Yang, C.X.; Gao, Y. H.; Golberg, D.; Bando, Y. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. Adv. Mater.2013, 25, 4925–4931.

    CAS  Google Scholar 

  143. [143]

    Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy2016, 27, 230–237.

    CAS  Google Scholar 

  144. [144]

    Zhang, D. H.; Miao, M. H.; Niu, H. T.; Wei, Z. X. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano2014, 8, 4571–4579.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (Nos. 21631002 and U1632119), the Ministry of Science and Technology of China (No. 2016YFA0201904), and the Jiangsu Natural Science Foundation (No. BK20180002).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jiangfeng Ni or Yan Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Ni, J. & Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 13, 1825–1841 (2020). https://doi.org/10.1007/s12274-020-2729-5

Download citation

Keywords

  • carbon nanotubes
  • nanostructures
  • electrodes
  • flexible
  • supercapacitors