Skip to main content

Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene

Abstract

Diminishing surface defect states in perovskite nanocrystals is a highly challenging subject for enhancing optoelectronic device performance. We synthesized organic/inorganic lead-halide perovskite MAPbBr3 (MA = methylammonium) clusters comprising nanocrystals with diameters ranging between 20–30 nm and characterized an enhanced photoluminescence (PL) quantum yield (as much as ~ 7 times) by encapsulating the MAPbBr3 with graphene (Gr). The optical properties of MAPbBr3 and Gr/MAPbBr3 were investigated by temperature-dependent micro-PL and time-resolved PL measurements. Density functional theory calculations show that the surface defect states in MAPbBr3 are removed and the optical band gap is reduced by a 0.15 eV by encapsulation with graphene due to partial restoration of lattice distortions.

This is a preview of subscription content, access via your institution.

References

  1. Park, N. G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy2016, 1, 16152.

    CAS  Google Scholar 

  2. De Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science2015, 348, 683–686.

    CAS  Google Scholar 

  3. Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science2017, 356, 1376–1379.

    CAS  Google Scholar 

  4. Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science2015, 345, 1593–1596.

    Google Scholar 

  5. Manser, J. S.; Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics2014, 8, 737–743.

    CAS  Google Scholar 

  6. Myung, C. W.; Yun, J.; Lee, G.; Kim, K. S. A new perspective on the role of a-site cations in perovskite solar cells. Adv. Energy Mater.2018, 8, 1702898.

    Google Scholar 

  7. Jana, A.; Kim, K. S. Water-stable, fluorescent organic-inorganic hybrid and fully inorganic perovskites. ACS Energy Lett.2018, 3, 2120–2126.

    CAS  Google Scholar 

  8. Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N. S.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science2015, 350, 1222–1225.

    CAS  Google Scholar 

  9. Seo, H. K.; Kim, H.; Lee, J.; Park, M. H.; Jeong, S. H.; Kim, Y. H.; Kwon, S. J.; Han, T. H.; Yoo, S.; Lee, T. W. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv. Mater.2017, 29, 1605587.

    Google Scholar 

  10. Tombe, S.; Adam, G.; Heilbrunner, H.; Apaydin, D. H.; Ulbricht, C.; Sariciftci, N. S.; Arendse, C. J.; Iwuoha, E.; Scharber, M. C. Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater. Chem. C2017, 5, 1714–1723.

    CAS  Google Scholar 

  11. Cui, D.; Yang, Z.; Yang, D.; Ren, X. D.; Liu, Y. C.; Wei, Q. B.; Fan, H. B.; Zeng, J. H.; Liu, S. Z. Color-tuned perovskite films prepared for efficient solar cell applications. J. Phys. Chem. C2016, 120, 42–47.

    CAS  Google Scholar 

  12. Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S. Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A2014, 2, 9221–9225.

    CAS  Google Scholar 

  13. Mittal, M.; Jana, A.; Sarkar, S.; Mahadevan, P.; Sapra, S. Size of the organic cation tunes the band gap of colloidal organolead bromide perovskite nanocrystals. J. Phys. Chem. Lett.2016, 7, 3270–3277.

    CAS  Google Scholar 

  14. Yang, Y.; Yan, Y.; Yang, M. J.; Choi, S.; Zhu, K.; Luther, J. M.; Beard, M. C. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun.2015, 6, 7961.

    CAS  Google Scholar 

  15. Shi, T. T.; Yin, W. J.; Hong, F.; Zhu, K.; Yan, Y. F. Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett.2015, 106, 103902.

    Google Scholar 

  16. Lozhkina, O. A.; Yudin, V. I.; Murashkina, A. A.; Shilovskikh, V. V.; Davydov, V. G.; Kevorkyants, R.; Emeline, A. V.; Kapitonov, Y. V.; Bahnemann, D. W. Low inhomogeneous broadening of excitonic resonance in MAPbBr3 single crystals. J. Phys. Chem. Lett.2018, 9, 302–305.

    CAS  Google Scholar 

  17. Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Comm.2016, 7, 11755.

    Google Scholar 

  18. Chen, F.; Zhu, C.; Xu, C. X.; Fan, P.; Qin, F. F.; Gowri Manohari, A.; Lu, J. F.; Shi, Z. L.; Xu, Q. Y.; Pan, A. L. Crystal structure and electron transition underlying photoluminescence of methylammonium lead bromide perovskites. J. Mater. Chem. C2017, 5, 7739–7745.

    CAS  Google Scholar 

  19. Dai, J.; Zheng, H. G.; Zhu, C.; Lu, J. F.; Xu, C. X. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. J. Mater. Chem. C2016, 4, 4408–4413.

    CAS  Google Scholar 

  20. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano2015, 9, 4533–4542.

    CAS  Google Scholar 

  21. Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D. D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett.2014, 5, 1421–1426.

    CAS  Google Scholar 

  22. Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano2014, 8, 9815–9821.

    CAS  Google Scholar 

  23. Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science1998, 281, 945–950.

    CAS  Google Scholar 

  24. Ahmed, G. H.; El-Demellawi, J. K.; Yin, J.; Pan, J.; Velusamy, D. B.; Hedhili, M. N.; Alarousu, E.; Bakr, O. M.; Alshareef, H. N.; Mohammed, O. F. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett.2018, 3, 2301–2307.

    CAS  Google Scholar 

  25. Li, H.; Tao, L. M.; Huang, F. H.; Sun, Q.; Zhao, X. J.; Han, J. B.; Shen, Y.; Wang, M. K. Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer. ACS Appl. Mater. Interfaces2017, 9, 38967–38976.

    CAS  Google Scholar 

  26. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature2009, 457, 706–710.

    CAS  Google Scholar 

  27. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    CAS  Google Scholar 

  28. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol.2010, 5, 574–578.

    CAS  Google Scholar 

  29. Yu, S. U.; Lee, H.; Cho, W. J.; Kim, C.; Kang, M. C.; Shin, H. J.; Kim, N.; Hahn, S. K.; Kim, K. S. Spectromicroscopic observation of a live single cell in a biocompatible liquid-enclosing graphene system. Nanoscale2018, 10, 150–157.

    CAS  Google Scholar 

  30. Teunis, M. B.; Jana, A.; Dutta, P.; Johnson, M. A.; Mandal, M.; Muhoberac, B. B.; Sardar, R. Mesoscale growth and assembly of bright luminescent organolead halide perovskite quantum wires. Chem. Mater.2016, 28, 5043–5054.

    CAS  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169.

    CAS  Google Scholar 

  32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  33. Tkatchenko, A.; Distasio, R. A.; Car, R.; Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett.2012, 108, 236402.

    Google Scholar 

  34. Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for bader charge integration. J. Chem. Phys.2011, 134, 064111.

    Google Scholar 

  35. Chin, S. H.; Choi, J. W.; Woo, H. C.; Kim, J. H.; Lee, H. S.; Lee, C. L. Realizing a highly luminescent perovskite thin film by controlling the grain size and crystallinity through solvent vapour annealing. Nanoscale2019, 11, 5861–5867.

    CAS  Google Scholar 

  36. Fang, H. H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even, J.; Antonietta Loi, M. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl.2016, 5, e16056.

    CAS  Google Scholar 

  37. Onoda-Yamamuro, N.; Matsuo, T.; Suga, H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids1990, 51, 1383–1395.

    CAS  Google Scholar 

  38. Zakharchenko, K. V.; Katsnelson, M. I.; Fasolino, A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett.2009, 102, 046808.

    CAS  Google Scholar 

  39. Yoon, D.; Son, Y. W.; Cheong, H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett.2011, 11, 3227–3231.

    CAS  Google Scholar 

  40. Liu, M. X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature2019, 570, 96–101.

    CAS  Google Scholar 

  41. Kunugita, H.; Kiyota, Y.; Udagawa, Y.; Takeoka, Y.; Nakamura, Y.; Sano, J.; Matsushita, T.; Kondo, T.; Ema, K. Exciton-exciton scattering in perovskite CH3NH3PbBr3 single crystal. Jpn. J. Appl. Phys.2016, 55, 060304.

    Google Scholar 

  42. Fang, H. H.; Raissa, R.; Abdu-Aguye, M.; Adjokatse, S.; Blake, G. R.; Even, J.; Loi, M. A. Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals. Adv. Funct. Mat.2015, 25, 2378–2385.

    CAS  Google Scholar 

  43. Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative study on the excitons in lead-halide-based perovskitetype crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Comm.2003, 127, 619–623.

    CAS  Google Scholar 

  44. Seguin, R.; Rodt, S.; Strittmatter, A.; Reißmann, L.; Bartel, T.; Hoffmann, A.; Bimberg, D.; Hahn, E.; Gerthsen, D. Multi-excitonic complexes in single InGaN quantum dots. Appl. Phys. Lett.2004, 84, 4023–4025.

    CAS  Google Scholar 

  45. Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett.2014, 5, 279–284.

    CAS  Google Scholar 

  46. Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mat.2014, 26, 1584–1589.

    CAS  Google Scholar 

  47. Xing, G. C.; Wu, B.; Wu, X. Y.; Li, M. J.; Du, B.; Wei, Q.; Guo, J.; Yeow, E. K. L.; Sum, T. C.; Huang, W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun.2017, 8, 14558.

    CAS  Google Scholar 

  48. Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Recombination kinetics in organic-inorganic perovskites: Excitons, free charge, and subgap states. Phys. Rev. Appl.2014, 2, 034007.

    Google Scholar 

  49. Smyth, D. M. Defects and order in perovskite-related oxides. Annu. Rev. Mater. Sci.1985, 15, 329–357.

    CAS  Google Scholar 

  50. Yin, W. J.; Shi, T. T.; Yan, Y. F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett.2014, 104, 063903.

    Google Scholar 

  51. Shkrob, I. A.; Marin, T. W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds. J. Phys. Chem. Lett.2014, 5, 1066–1071.

    CAS  Google Scholar 

  52. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15–50.

    CAS  Google Scholar 

  53. Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett.2009, 102, 073005.

    Google Scholar 

  54. Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett.2017, 2, 2071–2083.

    CAS  Google Scholar 

  55. Volonakis, G.; Giustino, F. Ferroelectric graphene-perovskite interfaces. J. Phys. Chem. Lett.2015, 6, 2496–2502.

    CAS  Google Scholar 

  56. Myung, C. W.; Javaid, S.; Kim, K. S.; Lee, G. Rashba-dresselhaus effect in inorganic/organic lead iodide perovskite interfaces. ACS Energy Lett.2018, 3, 1294–1300.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program and National Honor Scientist Program through the National Research Foundation of Korea (NRF) (Nos. 2010-0020414, 2015R1D1A1A01058332, 2018R1D1A1B07043676, and 2019R1A4A1029237). K. S. K. acknowledges the support from KISTI (Nos. KSC-2018-CRE-0077 and KSC-2018-CHA-0057). C. W. M. acknowledges the support from KISTI (Nos. KSC-2018-CRE-0071, KSC-2019-CRE-0139, and KSC-2019-CRE-0248).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert A. Taylor or Kwang S. Kim.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Jana, A., Myung, C.W. et al. Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Res. 13, 932–938 (2020). https://doi.org/10.1007/s12274-020-2718-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2718-8

Keywords

  • perovskite nanocluster
  • photoluminescence
  • surface passivation
  • graphene
  • density functional theory calculations