Skip to main content

Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly


The rapid development of solar cells based on lead halide perovskites (LHPs) has prompted very active research activities in other closely-related fields. Colloidal nanostructures of such materials display superior optoelectronic properties. Especially, one-dimensional (1D) LHPs nanowires show anisotropic optical properties when they are highly oriented. However, the ionic nature makes them very sensitive to external environment, limiting their large scale practical applications. Here, we introduce an amphiphilic block copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-P4VP), to chemically modify the surface of colloidal CsPbBr3 nanowires. The resulting core-shell nanowires show enhanced photoluminescent emission and good colloidal stability against water. Taking advantage of the stability enhancement, we further applied a modified Langmuir-Blodgett technique to assemble monolayers of highly aligned nanowires, and studied their anisotropic optical properties.

This is a preview of subscription content, access via your institution.


  1. [1]

    Dou, L. T.; Yang, Y.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun.2014, 5, 5404.

    CAS  Article  Google Scholar 

  2. [2]

    Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed.2016, 55, 7924–7929.

    CAS  Article  Google Scholar 

  3. [3]

    Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics2017, 11, 108–115.

    CAS  Article  Google Scholar 

  4. [4]

    Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA2016, 113, 1993–1998.

    CAS  Article  Google Scholar 

  5. [5]

    Lin, J.; Lai, M. L.; Dou, L. T.; Kley, C. S.; Chen, H.; Peng, F.; Sun, J. L.; Lu, D.; Hawks, S. A.; Xie, C. L. et al. Thermochromic halide perovskite solar cells. Nat. Mater.2018, 17, 261–267.

    CAS  Article  Google Scholar 

  6. [6]

    Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett.2017, 2, 2071–2083.

    CAS  Article  Google Scholar 

  7. [7]

    Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science2001, 293, 1455–1457.

    CAS  Article  Google Scholar 

  8. [8]

    Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Linearly polarized emission from colloidal semiconductor quantum rods. Science2001, 292, 2060–2063.

    CAS  Article  Google Scholar 

  9. [9]

    Boehm, S. J.; Kang, L.; Werner, D. H.; Keating, C. D. Field-switchable broadband polarizer based on reconfigurable nanowire assemblies. Adv. Funct. Mater.2017, 27, 1604703.

    Article  Google Scholar 

  10. [10]

    Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett.2003, 3, 1229–1233.

    CAS  Article  Google Scholar 

  11. [11]

    Tao, A. R.; Huang, J. X.; Yang, P. D. Langmuir-Blodgettry of nanocrystals and nanowires. Acc. Chem. Res.2008, 41, 1662–1673.

    CAS  Article  Google Scholar 

  12. [12]

    Kang, J.; Wang, L. W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett.2017, 8, 489–493.

    CAS  Article  Google Scholar 

  13. [13]

    Luo, B. B.; Pu, Y. C.; Lindley, S. A.; Yang, Y.; Lu, L. Q.; Li, Y.; Li, X. M.; Zhang, J. Z. Organolead halide perovskite nanocrystals: Branched capping ligands control crystal size and stability. Angew. Chem., Int. Ed.2016, 55, 8864–8868.

    CAS  Article  Google Scholar 

  14. [14]

    Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano2016, 10, 3648–3657.

    CAS  Article  Google Scholar 

  15. [15]

    Liu, W. N.; Zheng, J. J.; Cao, S.; Wang, L.; Gao, F. M.; Chou, K. C.; Hou, X. M.; Yang, W. Y. General strategy for rapid production of low-dimensional all-inorganic CsPbBr3 perovskite nanocrystals with controlled dimensionalities and sizes. Inorg. Chem.2018, 57, 1598–1603.

    CAS  Article  Google Scholar 

  16. [16]

    De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano2016, 10, 2071–2081.

    CAS  Article  Google Scholar 

  17. [17]

    Zhang, H. H.; Wang, X.; Liao, Q.; Xu, Z. Z.; Li, H. Y.; Zheng, L. M.; Fu, H. B. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Adv. Funct. Mater.2017, 27, 1604382.

    Article  Google Scholar 

  18. [18]

    Raja, S. N.; Bekenstein, Y.; Koc, M. A.; Fischer, S.; Zhang, D. D.; Lin, L. W.; Ritchie, R. O.; Yang, P. D.; Alivisatos, A. P. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces2016, 8, 35523–35533.

    CAS  Article  Google Scholar 

  19. [19]

    Huang, H.; Chen, B. K.; Wang, Z. G.; Hung, T. F.; Susha, A. S.; Zhong, H. Z.; Rogach, A. L. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci.2016, 7, 5699–5703.

    CAS  Article  Google Scholar 

  20. [20]

    Zhang, D. D.; Yu, Y.; Bekenstein, Y.; Wong, A. B.; Alivisatos, A. P.; Yang, P. D. Ultrathin colloidal cesium lead halide perovskite nanowires. J. Am. Chem. Soc.2016, 138, 13155–13158.

    CAS  Article  Google Scholar 

  21. [21]

    Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc.2016, 138, 7236–7239.

    CAS  Article  Google Scholar 

  22. [22]

    Curtis, N. F. Macrocyclic coordination compounds formed by condensation of metal-amine complexes with aliphatic carbonyl compounds. Coord. Chem. Rev.1968, 3, 3–47.

    CAS  Article  Google Scholar 

  23. [23]

    Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano2014, 8, 9815–9821.

    CAS  Article  Google Scholar 

  24. [24]

    Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc.2017, 139, 6566–6569.

    CAS  Article  Google Scholar 

  25. [25]

    Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc.2015, 137, 9230–9233.

    CAS  Article  Google Scholar 

  26. [26]

    Dursun, I.; De Bastiani, M.; Turedi, B.; Alamer, B.; Shkurenko, A.; Yin, J.; El-Zohry, A. M.; Gereige, I.; Alsaggaf, A.; Mohammed, O. F. et al. CsPb2Br5 single crystals: Synthesis and characterization. ChemSusChem2017, 10, 3746–3749.

    CAS  Article  Google Scholar 

  27. [27]

    Zuo, L. J.; Guo, H. X.; deQuilettes, D. W.; Jariwala, S.; De Marco, N.; Dong, S. Q.; DeBlock, R.; Ginger, D. S.; Dunn, B.; Wang, M. K. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv.2017, 3, e1700106.

    Article  Google Scholar 

  28. [28]

    Tong, Y.; Bohn, B. J.; Bladt, E.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. From precursor powders to CsPbX3 perovskite nanowires: One-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem., Int. Ed.2017, 56, 13887–13892.

    CAS  Article  Google Scholar 

Download references


This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05-CH11231 within the Physical Chemistry of Inorganic Nanostructures Program (KC3103). M. S. acknowledges his support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1752814.

Author information



Corresponding author

Correspondence to Peidong Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Siron, M., Gao, M. et al. Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Res. 13, 1453–1458 (2020).

Download citation


  • nanowires
  • anisotropic optical properties
  • aligned monolayer
  • lead halide perovskites
  • stability enhancement