Abstract
Reusable solid fluorination reagents and heterogeneous catalysts are ideally suited for late-stage fluorination with fast and clean conversion and simplified work-up. Here we report Pd-functionalized two-dimensional metal-organic layers (MOLs) as solid reagents and heterogeneous catalysts to efficiently fluorinate a broad scope of aromatic compounds. Site isolation in the MOLs provides a unique opportunity to stabilize highly active F-containing species for the chemical conversion. A terpyridine (TPY)- based ligand on the MOL, together with a 2-chloro-1,10-phenanthroline (phenCl) as a co-ligand, chelates PdII to form a reactive center. After treatment with Selectfluor/H2O, an (N-fluoroxy)-(2-chloro)-phenanthrolinium [N-(FO)-phenCl+] moiety is produced from the co-ligand on the Pd center. This active species serves as a stochiometric solid fluorination reagent, which shows different regioselectivities and reactivities as compared to homogeneous catalysts that involves PdIII/IV-F intermediates in catalytic cycles. The MOLs can also be used as heterogeneous catalysts for fluorination using Selectfluor. This work highlights opportunities in using MOLs to stabilize unique active sites for late-stage fluorination.
Similar content being viewed by others
References
Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev.2008, 37, 320–330.
Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science2007, 317, 1881–1886.
Isanbor, C.; O' Hagan, D. Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluorine Chem.2006, 127, 303–319.
Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem.2015, 58, 8315–8359.
Jeschke, P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manage. Sci.2010, 66, 10–27.
Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem2004, 5, 570–589.
Fujiwara, T.; O'Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluorine Chem.2014, 167, 16–29.
Preshlock, S.; Tredwell, M.; Gouverneur, V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev.2016, 116, 719–766.
Komar, G.; Seppänen, M.; Eskola, O.; Lindholm, P.; Grönroos, T. J.; Forsback, S.; Sipilä, H.; Evans, S. M.; Solin, O.; Minn, H. 18F-EF5: A new PET tracer for imaging hypoxia in head and neck cancer. J. Nucl. Med.2008, 49, 1944–1951.
Kazumata, K.; Dhawan, V.; Chaly, T.; Antonini, A.; Margouleff, C.; Belakhlef, A.; Neumeyer, J.; Eidelberg, D. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J. Nucl. Med.1998, 39, 1521–1530.
Challapalli, A.; Aboagye, E. O. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring. Front. Oncol.2016, 6, 44.
Bohndiek, S. E.; Brindle, K. M. Imaging and ‘omic’ methods for the molecular diagnosis of cancer. Expert Rev. Mol. Diagn.2010, 10, 417–434.
Yerien, D. E.; Bonesi, S.; Postigo, A. Fluorination methods in drug discovery. Org. Biomol. Chem.2016, 14, 8398–8427.
Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev.2016, 45, 546–576.
Campbell, M. G.; Ritter, T. Late-stage fluorination: From fundamentals to application. Org. Process Res. Dev.2014, 18, 474–480.
Mazzotti, A. R.; Campbell, M. G.; Tang, P. P.; Murphy, J. M.; Ritter, T. Palladium(III)-catalyzed fluorination of arylboronic acid derivatives. J. Am. Chem. Soc.2013, 135, 14012–14015.
Hull, K. L.; Anani, W. Q.; Sanford, M. S. Palladium-catalyzed fluorination of carbon-hydrogen bonds. J. Am. Chem. Soc.2006, 128, 7134–7135.
Grushin, V. V. The organometallic fluorine chemistry of palladium and rhodium: Studies toward aromatic fluorination. Acc. Chem. Res.2010, 43, 160–171.
Liu, W.; Groves, J. T. Manganese catalyzed C-H halogenation. Acc. Chem. Res.2015, 48, 1727–1735.
Huang, X. Y.; Bergsten, T. M.; Groves, J. T. Manganese-catalyzed late-stage aliphatic C-H azidation. J. Am. Chem. Soc.2015, 137, 5300–5303.
Teruo, U.; Masayuki, T. N,N'-difluoro-1,4-diazoniabicyclo[2.2.2] octane salts, highly reactive and easy-to-handle electrophilic fluorinating agents. Bull. Chem. Soc. Jpn.1996, 69, 2287–2295.
Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Selectfluor: Mechanistic insight and applications. Angew. Chem., Int. Ed.2004, 44, 192–212.
Hara, S.; Monoi, M.; Umemura, R.; Fuse, C. IF5-pyridine-HF: Airand moisture-stable fluorination reagent. Tetrahedron2012, 68, 10145–10150.
Chu, L. L.; Qing, F. L. Oxidative trifluoromethylation andtrifluoromethylthiolation reactions using (trifluoromethyl)trimethylsilane as a nucleophilic CF3 source. Acc. Chem. Res.2014, 47, 1513–1522.
Zhu, Q. H.; Ji, D. Z.; Liang, T. T.; Wang, X. Y.; Xu, Y. G. Efficient palladium-catalyzed C-H fluorination of C(sp3)-H bonds: Synthesis of ß-fluorinated carboxylic acids. Org. Lett.2015, 17, 3798–3801.
Watson, D. A.; Su, M. J.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Formation of ArF from LPdAr(F): Catalytic conversion of aryl triflates to aryl fluorides. Science2009, 325, 1661–1664.
McMurtrey, K. B.; Racowski, J. M.; Sanford, M. S. Pd-catalyzed C-H fluorination with nucleophilic fluoride. Org. Lett.2012, 14, 4094–4097.
Liu, W.; Groves, J. T. Manganese-catalyzed oxidative benzylic C-H fluorination by fluoride ions. Angew. Chem., Int. Ed.2013, 52, 6024–6027.
Braun, M. G.; Doyle, A. G. Palladium-catalyzed allylic C-H fluorination. J. Am. Chem. Soc.2013, 135, 12990–12993.
Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. A fluoridederived electrophilic late-stage fluorination reagent for PET imaging. Science2011, 334, 639–642.
Hebel, D.; Lerman, O.; Rozen, S. On the existence of acetyl hypofluorite. J. Fluorine Chem.1985, 30, 141–146.
Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev.2014, 43, 5468–5512.
Zhou, H. C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev.2014, 43, 5415–5418.
Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature2003, 423, 705–714.
Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res.2005, 38, 176–182.
Inokuma, Y.; Kawano, M.; Fujita, M. Crystalline molecular flasks. Nat. Chem.2011, 3, 349–358.
Ferey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev.2008, 37, 191–214.
Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science2002, 295, 469–472.
Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y. B.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature2004, 427, 523–527.
Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev.2012, 112, 1196–1231.
Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev.2017, 46, 4774–4808.
Ranocchiari, M.; van Bokhoven, J. A. Catalysis by metal-organic frameworks: Fundamentals and opportunities. Phys. Chem. Chem. Phys.2011, 13, 6388–6396.
Mlinar, A. N.; Keitz, B. K.; Gygi, D.; Bloch, E. D.; Long, J. R.; Bell, A. T. Selective propene oligomerization with Nickel(II)-based metal-organic frameworks. ACS Catal.2014, 4, 717–721.
Ma, L. Q.; Abney, C.; Lin, W. B. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev.2009, 38, 1248–1256.
Liu, Y.; Xuan, W. M.; Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater.2010, 22, 4112–4135.
Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev.2009, 38, 1450–1459.
Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X. Metal organic framework catalysis: Quo vadis? ACS Catal.2014, 4, 361–378.
Comito, R. J.; Fritzsching, K. J.; Sundell, B. J.; Schmidt-Rohr, K.; Dinca, M. Single-site heterogeneous catalysts for olefin polymerization enabled by cation exchange in a metal-organic framework. J. Am. Chem. Soc.2016, 138, 10232–10237.
Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev.2011, 40, 1081–1106.
Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal–organic layers as single-site solid catalysts. Angew. Chem., Int. Ed.2016, 55, 4962–4966.
Bétard, A.; Fischer, R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev.2012, 112, 1055–1083.
Xu, R. Y.; Drake, T.; Lan, G. X.; Lin, W. B. Metal-organic layers catalyze photoreactions without pore size and diffusion limitations. Chem.–Eur. J.2018, 24, 15772–15776.
Xu, R. Y.; Cai, Z. X.; Lan, G. X.; Lin, W. B. Metal-organic layers efficiently catalyze photoinduced polymerization under visible light. Inorg. Chem.2018, 57, 10489–10493.
Yamamoto, K.; Li, J. K.; Garber, J. A. O.; Rolfes, J. D.; Boursalian, G. B.; Borghs, J. C.; Genicot, C.; Jacq, J.; vanGastel, M.; Neese, F. et al. Palladium-catalysed electrophilic aromatic C-H fluorination. Nature2018, 554, 511–514.
Testa, C.; Roger, J.; Fleurat-Lessard, P.; Hierso, J. C. Palladiumcatalyzed electrophilic C–H-bond fluorination: Mechanistic overview and supporting evidence. Eur. J. Org. Chem.2019, 2019, 233–253.
Jiang, Y. B.; Cao, L. Y.; Hu, X. F.; Ren, Z. K.; Zhang, C. K.; Wang, C. Simulating powder X-ray diffraction patterns of two-dimensional materials. Inorg. Chem.2018, 57, 15123–15132.
Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. The aerobic oxidation of a Pd(II) dimethyl complex leads to selective ethane elimination from a Pd(III) intermediate. J. Am. Chem. Soc.2012, 134, 2414–2422.
Hindman, J. C.; Svirmickas, A.; Appelman, E. H. Proton and fluorine nuclear magnetic resonance observations on hypofluorous acid, HOF. J. Chem. Phys.1972, 57, 4542–4543.
Acknowledgments
We acknowledge funding support from the National Natural Science Foundation of China (NSFC) (Nos. 21671162 and 21721001) and the Ministry of Science and Technology of China (No. 2016YFA0200702).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Shi, W., Zeng, L., Cao, L. et al. Metal-organic layers as reusable solid fluorination reagents and heterogeneous catalysts for aromatic fluorination. Nano Res. 14, 473–478 (2021). https://doi.org/10.1007/s12274-020-2698-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-020-2698-8