Skip to main content

Progress in transdermal drug delivery systems for cancer therapy

Abstract

Transdermal drug delivery is an appealing option except for oral and hypodermic administration. With the advancement of skin penetration strategies, various anticancer therapeutics ranging from lipophilic small-molecule drugs to hydrophilic biomacromolecules, can be administered transdermally, offering an optional regimen to treat skin cancers. In addition, the activation of the skin immune systems can also assist the treatment of distal sites. Current approaches on enhancing the transdermal delivery efficacy of anticancer drugs are summarized in this review. We also survey recent advances in micro- and nanotechnology-based transdermal formulations for cancer treatment, such as chemotherapy, gene therapy, immunotherapy, phototherapy and combination therapy. New penetration enhancers, materials, formulations and their hypothesized mechanisms for transdermal delivery are highlighted. Advantages and limitations regarding the state-of-the-art transdermal delivery technologies, as well as future perspective are also discussed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Prausnitz, M. R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol.2008, 26, 1261–1268.

    CAS  Google Scholar 

  2. [2]

    Di Meglio, P.; Perera, G. K.; Nestle, F. O. The multitasking organ: Recent insights into skin immune function. Immunity2011, 35, 857–869.

    Google Scholar 

  3. [3]

    Menon, G. K.; Cleary, G. W.; Lane, M. E. The structure and function of the stratum corneum. Int. J. Pharm.2012, 435, 3–9.

    CAS  Google Scholar 

  4. [4]

    Roberts, M. S.; Mohammed, Y.; Pastore, M. N.; Namjoshi, S.; Yousef, S.; Alinaghi, A.; Haridass, I. N.; Abd, E.; Leite-Silva, V. R.; Benson, H. A. E. et al. Topical and cutaneous delivery using nanosystems. J. Control. Release2017, 247, 86–105.

    CAS  Google Scholar 

  5. [5]

    Neubert, R. H. H. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur. J. Pharm. Biopharm.2011, 77, 1–2.

    CAS  Google Scholar 

  6. [6]

    Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater.2016, 2, 16075.

    Google Scholar 

  7. [7]

    Lee, J. S.; Hwang, Y.; Oh, H.; Kim, S.; Kim, J. H.; Lee, J. H.; Shin, Y. C.; Tae, G.; Choi, W. I. A novel chitosan nanocapsule for enhanced skin penetration of cyclosporin A and effective hair growth in vivo. Nano Res.2019, 12, 3024–3030.

    CAS  Google Scholar 

  8. [8]

    Williams, A. C.; Barry, B. W. Penetration enhancers. Adv. Drug Deliv. Rev.2012, 64, 128–137.

    Google Scholar 

  9. [9]

    Marwah, H.; Garg, T.; Goyal, A. K.; Rath, G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv.2016, 23, 564–578.

    Google Scholar 

  10. [10]

    Karande, P.; Jain, A.; Ergun, K.; Kispersky, V.; Mitragotri, S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. USA2005, 102, 4688–4693.

    CAS  Google Scholar 

  11. [11]

    Ruan, R. Q.; Chen, M.; Zou, L. L.; Wei, P. F.; Liu, J. J.; Ding, W. P.; Wen, L. P. Recent advances in peptides for enhancing transdermal macromolecular drug delivery. Ther. Deliv.2016, 7, 89–100.

    CAS  Google Scholar 

  12. [12]

    Seong, J. S.; Yun, M. E.; Park, S. N. Surfactant-stable and pH-sensitive liposomes coated with N-succinyl-chitosan and chitooligosaccharide for delivery of quercetin. Carbohydr. Polym.2018, 181, 659–667.

    CAS  Google Scholar 

  13. [13]

    Rai, V. K.; Mishra, N.; Yadav, K. S.; Yadav, N. P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release2018, 270, 203–225.

    CAS  Google Scholar 

  14. [14]

    Yang, Y.; Pearson, R. M.; Lee, O.; Lee, C. W.; Chatterton, R. T. Jr.; Khan, S. A.; Hong, S. Dendron-based micelles for topical delivery of endoxifen: A potential chemo-preventive medicine for breast cancer. Adv. Funct. Mater.2014, 24, 2442–2449.

    CAS  Google Scholar 

  15. [15]

    Lee, H.; Lee, J. H.; Kim, J.; Mun, J. H.; Chung, J.; Koo, H.; Kim, C.; Yun, S. H.; Hahn, S. K. Hyaluronate-gold nanorod/DR5 antibody complex for noninvasive theranosis of skin cancer. ACS Appl. Mater. Interfaces2016, 8, 32202–32210.

    CAS  Google Scholar 

  16. [16]

    Siu, K. S.; Chen, D.; Zheng, X. F.; Zhang, X. S.; Johnston, N.; Liu, Y. L.; Yuan, K.; Koropatnick, J.; Gillies, E. R.; Min, W. P. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials2014, 35, 3435–3442.

    CAS  Google Scholar 

  17. [17]

    Prausnitz, M. R. A practical assessment of transdermal drug delivery by skin electroporation. Adv. Drug Deliv. Rev.1999, 35, 61–76.

    CAS  Google Scholar 

  18. [18]

    Lee, H.; Choi, T. K.; Lee, Y. B.; Cho, H. R.; Ghaffari, R.; Wang, L.; Choi, H. J.; Chung, T. D.; Lu, N. S.; Hyeon, T. et al. A graphenebased electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol.2016, 11, 566–572.

    Google Scholar 

  19. [19]

    Murthy, S. N.; Sammeta, S. M.; Bowers, C. Magnetophoresis for enhancing transdermal drug delivery: Mechanistic studies and patch design. J. Control. Release2010, 148, 197–203.

    CAS  Google Scholar 

  20. [20]

    Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA: A Cancer J. Clin.2019, 69, 7–34.

    Google Scholar 

  21. [21]

    Finger, P. T.; Milner, M. S.; McCormick, S. A. Topical chemotherapy for conjunctival melanoma. Br. J. Ophthalmol.1993, 77, 751–753.

    CAS  Google Scholar 

  22. [22]

    Kris, M. G.; Hellmann, M. D.; Chaft, J. E. Chemotherapy for lung cancers: Here to stay. Am. Soc. Clin. Oncol. Educ. Book2014, 34, e375–e380.

    Google Scholar 

  23. [23]

    Ethun, C. G.; Bilen, M. A.; Jani, A. B.; Maithel, S. K.; Ogan, K.; Master, V. A. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA: A Cancer J. Clin.2017, 67, 362–377.

    Google Scholar 

  24. [24]

    Citrin, D. E. Recent developments in radiotherapy. N. Engl. J. Med.2017, 377, 1065–1075.

    CAS  Google Scholar 

  25. [25]

    Buscail, L.; Bournet, B.; Vernejoul, F.; Cambois, G.; Lulka, H.; Hanoun, N.; Dufresne, M.; Meulle, A.; Vignolle-Vidoni, A.; Ligat, L. et al. First-in-man phase 1 clinical trial of gene therapy for advanced pancreatic cancer: Safety, biodistribution, and preliminary clinical findings. Mol. Ther.2015, 23, 779–789.

    CAS  Google Scholar 

  26. [26]

    Portnow, J.; Synold, T. W.; Badie, B.; Tirughana, R.; Lacey, S. F.; D’Apuzzo, M.; Metz, M. Z.; Najbauer, J.; Bedell, V.; Vo, T. et al. Neural stem cell–based anticancer gene therapy: A first-in-human study in recurrent high-grade glioma patients. Clin. Cancer Res.2017, 23, 2951–2960.

    CAS  Google Scholar 

  27. [27]

    Kirkwood, J. M.; Butterfield, L. H.; Tarhini, A. A.; Zarour, H.; Kalinski, P.; Ferrone, S. Immunotherapy of cancer in 2012. CA: A Cancer J. Clin.2012, 62, 309–335.

    Google Scholar 

  28. [28]

    Knuth, A.; Jäger, D.; Jäger, E. Cancer immunotherapy in clinical oncology. Cancer Chemother. Pharmacol.2000, 46, S46–S51.

    CAS  Google Scholar 

  29. [29]

    Wang, C.; Ye, Y. Q.; Hu, Q. Y.; Bellotti, A.; Gu, Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv. Mater.2017, 29, 1606036.

    Google Scholar 

  30. [30]

    Xu, X.; Li, T.; Shen, S. Y.; Wang, J. Q.; Abdou, P.; Gu, Z.; Mo, R. Advances in engineering cells for cancer immunotherapy. Theranostics2019, 9, 7889–7905.

    CAS  Google Scholar 

  31. [31]

    Ye, Y. Q.; Wang, C.; Zhang, X. D.; Hu, Q. Y.; Zhang, Y. Q.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L. et al. A melaninmediated cancer immunotherapy patch. Sci. Immunol.2017, 2, eaan5692.

    Google Scholar 

  32. [32]

    Beack, S.; Kong, W. H.; Jung, H. S.; Do, I. H.; Han, S.; Kim, H.; Kim, K. S.; Yun, S. H.; Hahn, S. K. Photodynamic therapy of melanoma skin cancer using carbon dot-chlorin e6-hyaluronate conjugate. Acta Biomater.2015, 26, 295–305.

    CAS  Google Scholar 

  33. [33]

    Gu, Z.; Chen, X. Y. Towards enhancing skin drug delivery. Adv. Drug Deliv. Rev.2018, 127, 1–2.

    CAS  Google Scholar 

  34. [34]

    van der Maaden, K.; Heuts, J.; Camps, M.; Pontier, M.; Terwisscha van Scheltinga, A.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release2018, 269, 347–354.

    Google Scholar 

  35. [35]

    Mathers, A. R.; Larregina, A. T. Professional antigen-presenting cells of the skin. Immunol. Res.2006, 36, 127–136.

    CAS  Google Scholar 

  36. [36]

    Zhao, Z. M.; Ukidve, A.; Dasgupta, A.; Mitragotri, S. Transdermal immunomodulation: Principles, advances and perspectives. Adv. Drug Deliv. Rev.2018, 127, 3–19.

    CAS  Google Scholar 

  37. [37]

    Walter, K.; Kurz, H. Binding of drugs to human skin: Influencing factors and the role of tissue lipids. J. Pharm. Pharmacol.1988, 40, 689–693.

    CAS  Google Scholar 

  38. [38]

    Prausnitz, M. R.; Elias, P. M.; Franz, T. J.; Schmuth, M.; Tsai, J.-C.; Menon, G. K.; Holleran, W. M.; Feingold, K. R. Skin barrier and transdermal drug delivery. Dermatology2012, 3, 2065–2073.

    Google Scholar 

  39. [39]

    McGrath, J. A.; Eady, R. A. J.; Pope, F. M. Anatomy and organization of human skin. In Rook’s Textbook of Dermatology. Burns, T.; Breathnach, S.; Cox, N.; Griffiths, N., Eds.; 7th ed. Blackwell: Hoboken, 2004.

    Google Scholar 

  40. [40]

    Christophers, E. Cellular architecture of the stratum corneum. J. Invest. Dermatol.1971, 56, 165–169.

    CAS  Google Scholar 

  41. [41]

    Behl, C. R.; Flynn, G. L.; Kurihara, T.; Harper, N.; Smith, W.; Higuchi, W. I.; Ho, N. F.; Pierson, C. L. Hydration and percutaneous absorption: I. Influence of hydration on alkanol permeation through hairless mouse skin. J. Invest. Dermatol.1980, 75, 346–352.

    CAS  Google Scholar 

  42. [42]

    Jhawat, V. C.; Saini, V.; Kamboj, S.; Maggon, N. Transdermal drug delivery systems: Approaches and advancements in drug absorption through skin. Int. J. Pharm. Sci. Rev. Res.2013, 20, 47–56.

    CAS  Google Scholar 

  43. [43]

    Allen, L. Jr.; Ansel, H. C. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems; 10th ed. Lippincott Williams & Wilkins: Baltimore, MD, 2013.

    Google Scholar 

  44. [44]

    Ye, Y. Q.; Wang, J. Q.; Sun, W. J.; Bomba, H. N.; Gu, Z. Topical and transdermal nanomedicines for cancer therapy. In Nanotheranostics for Cancer Applications; Rai, P.; Morris, S. A., Eds.; Springer: Cham, 2019; pp 231–251.

    Google Scholar 

  45. [45]

    Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.1997, 23, 3–25.

    CAS  Google Scholar 

  46. [46]

    Swain, S.; Beg, S.; Singh, A.; Patro, C. N.; Rao, M. E. B. Advanced techniques for penetration enhancement in transdermal drug delivery system. Curr. Drug Deliv.2011, 8, 456–473.

    CAS  Google Scholar 

  47. [47]

    Benson, H. A. E. Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv.2005, 2, 23–33.

    CAS  Google Scholar 

  48. [48]

    Dragicevic, N.; Maibach, H. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv. Drug Deliv. Rev.2018, 127, 58–84.

    CAS  Google Scholar 

  49. [49]

    Dias, M.; Naik, A.; Guy, R. H.; Hadgraft, J.; Lane, M. E. In vivo infrared spectroscopy studies of alkanol effects on human skin. Eur. J. Pharm. Biopharm.2008, 69, 1171–1175.

    CAS  Google Scholar 

  50. [50]

    Lane, M. E. Skin penetration enhancers. Int. J. Pharm.2013, 447, 12–21.

    CAS  Google Scholar 

  51. [51]

    Barry, B. W. Mode of action of penetration enhancers in human skin. J. Control. Release1987, 6, 85–97.

    CAS  Google Scholar 

  52. [52]

    Barry, B. W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci.2001, 14, 101–114.

    CAS  Google Scholar 

  53. [53]

    Haque, T.; Talukder, M. M. U. Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv. Pharm. Bull.2018, 8, 169–179.

    CAS  Google Scholar 

  54. [54]

    Trommer, H.; Neubert, R. H. H. Overcoming the stratum corneum: The modulation of skin penetration. Skin Pharmacol. Physiol.2006, 19, 106–121.

    CAS  Google Scholar 

  55. [55]

    Moghadam, S. H.; Saliaj, E.; Wettig, S. D.; Dong, C.; Ivanova, M. V.; Huzil, J. T.; Foldvari, M. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability. Mol. Pharmaceutics2013, 10, 2248–2260.

    CAS  Google Scholar 

  56. [56]

    Tupker, R. A.; Pinnagoda, J.; Nater, J. P. The transient and cumulative effect of sodium lauryl sulphate on the epidermal barrier assessed by transepidermal water loss: Inter-individual variation. Acta Derm. Venereol.1990, 70, 1–5.

    CAS  Google Scholar 

  57. [57]

    Ashtikar, M.; Nagarsekar, K.; Fahr, A. Transdermal delivery from liposomal formulations-evolution of the technology over the last three decades. J. Control. Release2016, 242, 126–140.

    CAS  Google Scholar 

  58. [58]

    Candan, G.; Michiue, H.; Ishikawa, S.; Fujimura, A.; Hayashi, K.; Uneda, A.; Mori, A.; Ohmori, I.; Nishiki, T.; Matsui, H. et al. Combining poly-arginine with the hydrophobic counter-anion 4-(1-pyrenyl)-butyric acid for protein transduction in transdermal delivery. Biomaterials2012, 33, 6468–6475.

    CAS  Google Scholar 

  59. [59]

    Kim, Y. C.; Ludovice, P. J.; Prausnitz, M. R. Transdermal delivery enhanced by magainin pore-forming peptide. J. Control. Release2007, 122, 375–383.

    CAS  Google Scholar 

  60. [60]

    Cohen-Avrahami, M.; Libster, D.; Aserin, A.; Garti, N. Sodium diclofenac and cell-penetrating peptides embedded in hii mesophases: Physical characterization and delivery. J. Phys. Chem. B2011, 115, 10189–10197.

    CAS  Google Scholar 

  61. [61]

    Kumar, S.; Sahdev, P.; Perumal, O.; Tummala, H. Identification of a novel skin penetration enhancement peptide by phage display peptide library screening. Mol. Pharmaceutics2012, 9, 1320–1330.

    CAS  Google Scholar 

  62. [62]

    Johnson, L. N.; Cashman, S. M.; Read, S. P.; Kumar-Singh, R. Cell penetrating peptide pod mediates delivery of recombinant proteins to retina, cornea and skin. Vision Res.2010, 50, 686–697.

    CAS  Google Scholar 

  63. [63]

    Chen, Y. P.; Shen, Y. Y.; Guo, X.; Zhang, C. S.; Yang, W. J.; Ma, M. L.; Liu, S.; Zhang, M. B.; Wen, L. P. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotechnol.2006, 24, 455–460.

    CAS  Google Scholar 

  64. [64]

    Ruan, R. Q.; Wang, S. S.; Wang, C. L.; Zhang, L.; Zhang, Y. J.; Zhou, W.; Ding, W. P.; Jin, P. P.; Wei, P. F.; Man, N. et al. Transdermal delivery of human epidermal growth factor facilitated by a peptide chaperon. Eur. J. Med. Chem.2013, 62, 405–409.

    CAS  Google Scholar 

  65. [65]

    Carmichael, N. M. E.; Dostrovsky, J. O.; Charlton, M. P. Peptidemediated transdermal delivery of botulinum neurotoxin type a reduces neurogenic inflammation in the skin. Pain2010, 149, 316–324.

    CAS  Google Scholar 

  66. [66]

    Chang, M. M.; Li, X. H.; Sun, Y. M.; Cheng, F.; Wang, Q.; Xie, X. H.; Zhao, W. J.; Tian, X. Effect of cationic cyclopeptides on transdermal and transmembrane delivery of insulin. Mol. Pharmaceutics2013, 10, 951–957.

    CAS  Google Scholar 

  67. [67]

    Chen, M.; Gupta, V.; Anselmo, A. C.; Muraski, J. A.; Mitragotri, S. Topical delivery of hyaluronic acid into skin using space-peptide carriers. J. Control. Release2014, 173, 67–74.

    CAS  Google Scholar 

  68. [68]

    Vij, M.; Natarajan, P.; Pattnaik, B. R.; Alam, S.; Gupta, N.; Santhiya, D.; Sharma, R.; Singh, A.; Ansari, K. M.; Gokhale, R. S. et al. Noninvasive topical delivery of plasmid DNA to the skin using a peptide carrier. J. Control. Release2016, 222, 159–168.

    CAS  Google Scholar 

  69. [69]

    Hsu, T.; Mitragotri, S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. USA2011, 108, 15816–15821.

    CAS  Google Scholar 

  70. [70]

    Chen, M.; Zakrewsky, M.; Gupta, V.; Anselmo, A. C.; Slee, D. H.; Muraski, J. A.; Mitragotri, S. Topical delivery of siRNA into skin using SPACE-peptide carriers. J. Control. Release2014, 179, 33–41.

    Google Scholar 

  71. [71]

    Jiang, T. Y.; Wang, T.; Li, T.; Ma, Y. D.; Shen, S. Y.; He, B. F.; Mo, R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano2018, 12, 9693–9701.

    CAS  Google Scholar 

  72. [72]

    Niu, J.; Chu, Y.; Huang, Y. F.; Chong, Y. S.; Jiang, Z. H.; Mao, Z. W.; Peng, L. H.; Gao, J. Q. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl. Mater. Interfaces2017, 9, 9388–9401.

    CAS  Google Scholar 

  73. [73]

    Kumar, S.; Zakrewsky, M.; Chen, M.; Menegatti, S.; Muraski, J. A.; Mitragotri, S. Peptides as skin penetration enhancers: Mechanisms of action. J. Control. Release2015, 199, 168–178.

    CAS  Google Scholar 

  74. [74]

    Zhou, X. L.; Hao, Y.; Yuan, L. P.; Pradhan, S.; Shrestha, K.; Pradhan, O.; Liu, H. J.; Li, W. Nano-formulations for transdermal drug delivery: A review. Chin. Chem. Lett.2018, 29, 1713–1724.

    CAS  Google Scholar 

  75. [75]

    Zou, L. L.; Ding, W. P.; Zhang, Y. Y.; Cheng, S. H.; Li, F. F.; Ruan, R. Q.; Wei, P. F.; Qiu, B. S. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin. Biomaterials2018, 182, 1–12.

    CAS  Google Scholar 

  76. [76]

    Wu, J.; Paudel, K. S.; Strasinger, C.; Hammell, D.; Stinchcomb, A. L.; Hinds, B. J. Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc. Natl. Acad. Sci. USA2010, 107, 11698–11702.

    CAS  Google Scholar 

  77. [77]

    Labala, S.; Mandapalli, P. K.; Kurumaddali, A.; Venuganti, V. V. K. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol. Pharmaceutics2015, 12, 878–888.

    CAS  Google Scholar 

  78. [78]

    Desai, P.; Patlolla, R. R.; Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol.2010, 27, 247–259.

    CAS  Google Scholar 

  79. [79]

    Labouta, H. I.; El-Khordagui, L. K.; Kraus, T.; Schneider, M. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale2011, 3, 4989–4999.

    CAS  Google Scholar 

  80. [80]

    Raju, G.; Katiyar, N.; Vadukumpully, S.; Shankarappa, S. A. Penetration of gold nanoparticles across the stratum corneum layer of thick-skin. J. Dermatol. Sci.2018, 89, 146–154.

    CAS  Google Scholar 

  81. [81]

    Rancan, F.; Gao, Q.; Graf, C.; Troppens, S.; Hadam, S.; Hackbarth, S.; Kembuan, C.; Blume-Peytavi, U.; Rühl, E.; Lademann, J. et al. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano2012, 6, 6829–6842.

    CAS  Google Scholar 

  82. [82]

    Wiraja, C.; Zhu, Y.; Lio, D. C. S.; Yeo, D. C.; Xie, M.; Fang, W. N.; Li, Q.; Zheng, M. J.; Van Steensel, M.; Wang, L. H. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun.2019, 10, 1147.

    Google Scholar 

  83. [83]

    Nummelin, S.; Kommeri, J.; Kostiainen, M. A.; Linko, V. Evolution of structural DNA nanotechnology. Adv. Mater.2018, 30, 1703721.

    Google Scholar 

  84. [84]

    Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol.1982, 99, 237–247.

    CAS  Google Scholar 

  85. [85]

    Mathur, D.; Medintz, I. L. The growing development of DNA nanostructures for potential healthcare-related applications. Adv. Healthc. Mater.2019, 8, 1801546.

    Google Scholar 

  86. [86]

    Shah, S. M.; Ashtikar, M.; Jain, A. S.; Makhija, D. T.; Nikam, Y.; Gude, R. P.; Steiniger, F.; Jagtap, A. A.; Nagarsenker, M. S.; Fahr, A. LeciPlex, invasomes, and liposomes: A skin penetration study. Int. J. Pharm.2015, 490, 391–403.

    CAS  Google Scholar 

  87. [87]

    Dragicevic-Curic, N.; Gräfe, S.; Gitter, B.; Winter, S.; Fahr, A. Surface charged temoporfin-loaded flexible vesicles: In vitro skin penetration studies and stability. Int. J. Pharm.2010, 384, 100–108.

    CAS  Google Scholar 

  88. [88]

    Kong, M.; Hou, L.; Wang, J.; Feng, C.; Liu, Y.; Cheng, X. J.; Chen, X. G. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun.2015, 51, 1453–1456.

    CAS  Google Scholar 

  89. [89]

    Jung, H. S.; Kong, W. H.; Sung, D. K.; Lee, M. Y.; Beack, S. E.; Keum, D. H.; Kim, K. S.; Yun, S. H.; Hahn, S. K. Nanographene oxidehyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano2014, 8, 260–268.

    CAS  Google Scholar 

  90. [90]

    Alexander, A.; Dwivedi, S.; Ajazuddin; Giri, T. K.; Saraf, S.; Saraf, S.; Tripathi, D. K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Release2012, 164, 26–40.

    CAS  Google Scholar 

  91. [91]

    Yang, G.; Chen, Q.; Wen, D.; Chen, Z. W.; Wang, J. Q.; Chen, G. J.; Wang, Z. J.; Zhang, X. D.; Zhang, Y. Q.; Hu, Q. Y. et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano2019, 13, 4354–4360.

    CAS  Google Scholar 

  92. [92]

    Ye, Y. Q.; Yu, J. C.; Wen, D.; Kahkoska, A. R.; Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev.2018, 127, 106–118.

    CAS  Google Scholar 

  93. [93]

    Tomoda, K.; Terashima, H.; Suzuki, K.; Inagi, T.; Terada, H.; Makino, K. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf. B: Biointerfaces2012, 92, 50–54.

    CAS  Google Scholar 

  94. [94]

    Wu, C. S.; Jiang, P.; Li, W.; Guo, H. Y.; Wang, J.; Chen, J.; Prausnitz, M. R.; Wang, Z. L. Self-powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions. Adv. Funct. Mater.2019, 30, 1907378.

    Google Scholar 

  95. [95]

    Wang, Y. P.; Thakur, R.; Fan, Q. X.; Michniak, B. Transdermal iontophoresis: Combination strategies to improve transdermal iontophoretic drug delivery. Eur. J. Pharm. Biopharm.2005, 60, 179–191.

    CAS  Google Scholar 

  96. [96]

    Denet, A. R.; Vanbever, R.; Préat, V. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev.2004, 56, 659–674.

    CAS  Google Scholar 

  97. [97]

    Wenande, E.; Tam, J.; Bhayana, B.; Schlosser, S. K.; Ishak, E.; Farinelli, W. A.; Chlopik, A.; Hoang, M. P.; Pinkhasov, O. R.; Caravan, P. et al. Laser-assisted delivery of synergistic combination chemotherapy in in vivo skin. J. Control. Release2018, 275, 242–253.

    CAS  Google Scholar 

  98. [98]

    Svenskaya, Y. I.; Genina, E. A.; Parakhonskiy, B. V.; Lengert, E. V.; Talnikova, E. E.; Terentyuk, G. S.; Utz, S. R.; Gorin, D. A.; Tuchin, V. V.; Sukhorukov, G. B. A simple non-invasive approach toward efficient transdermal drug delivery based on biodegradable particulate system. ACS Appl. Mater. Interfaces2019, 11, 17270–17282.

    CAS  Google Scholar 

  99. [99]

    Azagury, A.; Khoury, L.; Enden, G.; Kost, J. Ultrasound mediated transdermal drug delivery. Adv. Drug Deliv. Rev.2014, 72, 127–143.

    CAS  Google Scholar 

  100. [100]

    Polat, B. E.; Hart, D.; Langer, R.; Blankschtein, D. Ultrasoundmediated transdermal drug delivery: Mechanisms, scope, and emerging trends. J. Control. Release2011, 152, 330–348.

    CAS  Google Scholar 

  101. [101]

    Kim, Y. C.; Park, J. H.; Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev.2012, 64, 1547–1568.

    CAS  Google Scholar 

  102. [102]

    Prausnitz, M. R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev.2004, 56, 581–587.

    CAS  Google Scholar 

  103. [103]

    Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA2015, 112, 8260–8265.

    CAS  Google Scholar 

  104. [104]

    Zhang, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Wang, J. Q.; Buse, J. B.; Gu, Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Revi.2019, 139, 51–70.

    CAS  Google Scholar 

  105. [105]

    Rzhevskiy, A. S.; Singh, T. R. R.; Donnelly, R. F.; Anissimov, Y. G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J. Control. Release2018, 270, 184–202.

    CAS  Google Scholar 

  106. [106]

    Huang, Y. Z.; Park, Y. S.; Moon, C.; David, A. E.; Chung, H. S.; Yang, V. C. Synthetic skin-permeable proteins enabling needleless immunization. Angew. Chem., Int. Ed.2010, 49, 2724–2727.

    CAS  Google Scholar 

  107. [107]

    Kalia, Y. N.; Naik, A.; Garrison, J.; Guy, R. H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev.2004, 56, 619–658.

    CAS  Google Scholar 

  108. [108]

    Petrilli, R.; Eloy, J. O.; Saggioro, F. P.; Chesca, D. L.; de Souza, M. C.; Dias, M. V. S.; daSilva, L. L. P.; Lee, R. J.; Lopez, R. F. V. Skin cancer treatment effectiveness is improved by iontophoresis of EGFRtargeted liposomes containing 5-FU compared with subcutaneous injection. J. Control. Release2018, 283, 151–162.

    CAS  Google Scholar 

  109. [109]

    Prausnitz, M. R.; Bose, V. G.; Langer, R.; Weaver, J. C. Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci.1993, 90, 10504–10508.

    CAS  Google Scholar 

  110. [110]

    Ibrahim, O.; Wenande, E.; Hogan, S.; Arndt, K. A.; Haedersdal, M.; Dover, J. S. Challenges to laser-assisted drug delivery: Applying theory to clinical practice. Lasers Surg. Med.2018, 50, 20–27.

    Google Scholar 

  111. [111]

    Zhang, Y. Q.; Yu, J. C.; Bomba, H. N.; Zhu, Y.; Gu, Z. Mechanical forcetriggered drug delivery. Chem. Rev.2016, 116, 12536–12563.

    CAS  Google Scholar 

  112. [112]

    Di, J.; Yu, J. C.; Wang, Q.; Yao, S. S.; Suo, D. J.; Ye, Y. Q.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res.2017, 10, 1393–1402.

    CAS  Google Scholar 

  113. [113]

    Mangalathillam, S.; Rejinold, N. S.; Nair, A.; Lakshmanan, V. K.; Nair, S. V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale2012, 4, 239–250.

    CAS  Google Scholar 

  114. [114]

    Lin, Y. L.; Chen, C. H.; Wu, H. Y.; Tsai, N. M.; Jian, T. Y.; Chang, Y. C.; Lin, C. H.; Wu, C. H.; Hsu, F. T.; Leung, T. K. et al. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J. Nanobiotechnol.2016, 14, 11.

  115. [115]

    Moses, M. A.; Brem, H.; Langer, R. Advancing the field of drug delivery: Taking aim at cancer. Cancer Cell2003, 4, 337–341.

    CAS  Google Scholar 

  116. [116]

    Jiang, T. Y.; Mo, R.; Bellotti, A.; Zhou, J. P.; Gu, Z. Gel-liposomemediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater.2014, 24, 2295–2304.

    CAS  Google Scholar 

  117. [117]

    Jiang, T. Y.; Zhang, Z. H.; Zhang, Y. L.; Lv, H. X.; Zhou, J. P.; Li, C. C.; Hou, L. L.; Zhang, Q. Dual-functional liposomes based on ph-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials2012, 33, 9246–9258.

    CAS  Google Scholar 

  118. [118]

    Rao, Y. F.; Chen, W.; Liang, X. G.; Huang, Y. Z.; Miao, J.; Liu, L.; Lou, Y.; Zhang, X. G.; Wang, B.; Tang, R. K. et al. Epirubicinloaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: Cancer therapy by circumventing the skin barrier. Small2015, 11, 239–247.

    CAS  Google Scholar 

  119. [119]

    Yang, H. J.; Wu, X. J.; Zhou, Z. Z.; Chen, X. G.; Kong, M. Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. Int. J. Biol. Macromol.2019, 125, 9–16.

    CAS  Google Scholar 

  120. [120]

    Luo, Z. M.; Sun, W. J.; Fang, J.; Lee, K.; Li, S.; Gu, Z.; Dokmeci, M. R.; Khademhosseini, A. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv. Healthc. Mater.2019, 8, 1801054.

    Google Scholar 

  121. [121]

    Ahmed, K. S.; Shan, X. T.; Mao, J.; Qiu, L. P.; Chen, J. H. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater. Sci. Eng. C2019, 99, 1448–1458.

    CAS  Google Scholar 

  122. [122]

    Ma, L. L.; Wang, X. Y.; Wu, J. L.; Zhang, D. D.; Zhang, L.; Song, X. R.; Hong, H. Y.; He, C. L.; Mo, X. M.; Wu, S. F. et al. Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for the treatment of melanoma through transdermal delivery. Nanomedicine2019, 14, 2395–2408.

    CAS  Google Scholar 

  123. [123]

    Anirudhan, T. S.; Nair, A. S.; Bino, S. J. Nanoparticle assisted solvent selective transdermal combination therapy of curcumin and 5-flurouracil for efficient cancer treatment. Carbohydr. Polym.2017, 173, 131–142.

    CAS  Google Scholar 

  124. [124]

    Liu, J. B.; Wang, Z. G.; Zhao, S.; Ding, B. Q. Multifunctional nucleic acid nanostructures for gene therapies. Nano Res.2018, 11, 5017–5027.

    CAS  Google Scholar 

  125. [125]

    Zakrewsky, M.; Kumar, S.; Mitragotri, S. Nucleic acid delivery into skin for the treatment of skin disease: Proofs-of-concept, potential impact, and remaining challenges. J. Control. Release2015, 219, 445–456.

    CAS  Google Scholar 

  126. [126]

    Chen, X. F. Current and future technological advances in transdermal gene delivery. Adv. Drug Deliv. Rev.2018, 127, 85–105.

    CAS  Google Scholar 

  127. [127]

    Pan, J. T.; Ruan, W. Y.; Qin, M.; Long, Y. M.; Wan, T.; Yu, K. Y.; Zhai, Y. H.; Wu, C. B.; Xu, Y. H. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci. Rep.2018, 8, 1117.

    Google Scholar 

  128. [128]

    Ruan, R. Q.; Chen, M.; Sun, S. J.; Wei, P. F.; Zou, L. L.; Liu, J.; Gao, D. Y.; Wen, L. P.; Ding, W. P. Topical and targeted delivery of siRNAs to melanoma cells using a fusion peptide carrier. Sci. Rep.2016, 6, 29159.

    CAS  Google Scholar 

  129. [129]

    Li, X. F.; Xu, Q.; Zhang, P.; Zhao, X.; Wang, Y. X. Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal tumor. J. Control. Release2019, 314, 72–80.

    CAS  Google Scholar 

  130. [130]

    Khalil, D. N.; Smith, E. L.; Brentjens, R. J.; Wolchok, J. D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol.2016, 13, 273–290.

    CAS  Google Scholar 

  131. [131]

    Bluestone, J. A.; Bour-Jordan, H. Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb. Perspect. Biol.2012, 4, a007542.

    Google Scholar 

  132. [132]

    Dunn, G. P.; Bruce, A. T.; Ikeda, H.; Old, L. J.; Schreiber, R. D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol.2002, 3, 991–998.

    CAS  Google Scholar 

  133. [133]

    Neelapu, S. S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F. L.; Komanduri, K. V.; Lin, Y.; Jain, N.; Daver, N. et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat. Rev. Clin. Oncol.2018, 15, 47–62.

    CAS  Google Scholar 

  134. [134]

    Hargadon, K. M.; Johnson, C. E.; Williams, C. J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol.2018, 62, 29–39.

    CAS  Google Scholar 

  135. [135]

    Jäger, E.; Jäger, D.; Knuth, A. Clinical cancer vaccine trials. Curr. Opin. Immunol.2002, 14, 178–182.

    Google Scholar 

  136. [136]

    Cheever, M. A.; Higano, C. S. Provenge (sipuleucel-t) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res.2011, 17, 3520–3526.

    Google Scholar 

  137. [137]

    Haniffa, M.; Gunawan, M.; Jardine, L. Human skin dendritic cells in health and disease. J. Dermatol. Sci.2015, 77, 85–92.

    CAS  Google Scholar 

  138. [138]

    Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discovery2019, 18, 175–196.

    CAS  Google Scholar 

  139. [139]

    Yu, J. C.; Zhang, Y. Q.; Kahkoska, A. R.; Gu, Z. Bioresponsive transcutaneous patches. Curr. Opin. Biotechnol.2017, 48, 28–32.

    CAS  Google Scholar 

  140. [140]

    Wang, C.; Ye, Y. Q.; Hochu, G. M.; Sadeghifar, H.; Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett.2016, 16, 2334–2340.

    CAS  Google Scholar 

  141. [141]

    Ye, Y. Q.; Wang, J. Q.; Hu, Q. Y.; Hochu, G. M.; Xin, H. J.; Wang, C.; Gu, Z.; Ye, Y.; Wang, J.; Hu, Q. et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano2016, 10, 8956–8963.

    CAS  Google Scholar 

  142. [142]

    Tan, L.; Sun, X. Recent advances in mRNA vaccine delivery. Nano Res.2018, 11, 5338–5354.

    CAS  Google Scholar 

  143. [143]

    Zhao, Y.; Guo, Y. G.; Tang, L. Engineering cancer vaccines using stimuli-responsive biomaterials. Nano Res.2018, 11, 5355–5371.

    CAS  Google Scholar 

  144. [144]

    Lee, K.; Kim, M.; Seo, Y.; Lee, H. Development of mRNA vaccines and their prophylactic and therapeutic applications. Nano Res.2018, 11, 5173–5192.

    CAS  Google Scholar 

  145. [145]

    Palena, C.; Abrams, S. I.; Schlom, J.; Hodge, J. W. Cancer vaccines: Preclinical studies and novel strategies. Adv. Cancer Res.2006, 95, 115–145.

    CAS  Google Scholar 

  146. [146]

    Wakabayashi, R.; Kono, H.; Kozaka, S.; Tahara, Y.; Kamiya, N.; Goto, M. Transcutaneous codelivery of tumor antigen and resiquimod in solid-in-oil nanodispersions promotes antitumor immunity. ACS Biomater. Sci. Eng.2019, 5, 2297–2306.

    CAS  Google Scholar 

  147. [147]

    Kim, N. W.; Kim, S. Y.; Lee, J. E.; Yin, Y.; Lee, J. H.; Lim, S. Y.; Kim, E. S.; Duong, H. T. T.; Kim, H. K.; Kim, S. et al. Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano2018, 12, 9702–9713.

    CAS  Google Scholar 

  148. [148]

    Duong, H. T. T.; Yin, Y.; Thambi, T.; Nguyen, T. L.; Giang Phan, V. H.; Lee, M. S.; Lee, J. E.; Kim, J.; Jeong, J. H.; Lee, D. S. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials2018, 185, 13–24.

    CAS  Google Scholar 

  149. [149]

    Xu, J. J.; Xu, B. H.; Tao, J.; Yang, Y. X.; Hu, Y.; Huang, Y. Z. Microneedle-assisted, DC-targeted codelivery of pTRP-2 and adjuvant of paclitaxel for transcutaneous immunotherapy. Small2017, 13, 1700666.

    Google Scholar 

  150. [150]

    Tawde, S. A.; Chablani, L.; Akalkotkar, A.; D’Souza, M. J. Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery. J. Control. Release2016, 235, 147–154.

    CAS  Google Scholar 

  151. [151]

    Jarvi, M. T.; Niedre, M. J.; Patterson, M. S.; Wilson, B. C. The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response. Photochem. Photobiol.2011, 87, 223–234.

    CAS  Google Scholar 

  152. [152]

    Yang, J. A.; Kim, E. S.; Kwon, J. H.; Kim, H.; Shin, J. H.; Yun, S. H.; Choi, K. Y.; Hahn, S. K. Transdermal delivery of hyaluronic acid–human growth hormone conjugate. Biomaterials2012, 33, 5947–5954.

    CAS  Google Scholar 

  153. [153]

    Brown, M. B.; Jones, S. A. Hyaluronic acid: A unique topical vehicle for the localized delivery of drugs to the skin. J. Eur. Acad. Dermatol. Venereol.2005, 19, 308–318.

    CAS  Google Scholar 

  154. [154]

    Banerji, S.; Wright, A. J.; Noble, M.; Mahoney, D. J.; Campbell, I. D.; Day, A. J.; Jackson, D. G. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat. Struct. Mol. Biol.2007, 14, 234–239.

    CAS  Google Scholar 

  155. [155]

    Jain, A. K.; Lee, C. H.; Gill, H. S. 5-aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release2016, 239, 72–81.

    CAS  Google Scholar 

  156. [156]

    Zhao, X.; Li, X. F.; Zhang, P.; Du, J. W.; Wang, Y. X. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J. Control. Release2018, 286, 201–209.

    CAS  Google Scholar 

  157. [157]

    Shahbazi, M. A.; Shrestha, N.; Mäkilä, E.; Araújo, F.; Correia, A.; Ramos, T.; Sarmento, B.; Salonen, J.; Hirvonen, J.; Santos, H. A. A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Res.2015, 8, 1505–1521.

    CAS  Google Scholar 

  158. [158]

    Song, Y. L.; Wang, Y. D.; Wang, S. Y.; Cheng, Y.; Lu, Q. L.; Yang, L. F.; Tan, F. P.; Li, N. Immune-adjuvant loaded Bi2Se3 nanocage for photothermal-improved PD-L1 checkpoint blockade immunetumor metastasis therapy. Nano Res.2019, 12, 1770–1780.

    CAS  Google Scholar 

  159. [159]

    Shen, S. Y.; Liu, M.; Li, T.; Lin, S. Q.; Mo, R. Recent progress in nanomedicine-based combination cancer therapy using a sitespecific co-delivery strategy. Biomater. Sci.2017, 5, 1367–1381.

    CAS  Google Scholar 

  160. [160]

    Ali, O. A.; Emerich, D.; Dranoff, G.; Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med.2009, 1, 8ra19.

    Google Scholar 

  161. [161]

    Kim, J.; Li, W. A.; Choi, Y.; Lewin, S. A.; Verbeke, C. S.; Dranoff, G.; Mooney, D. J. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol.2015, 33, 64–72.

    CAS  Google Scholar 

  162. [162]

    Stephan, S. B.; Taber, A. M.; Jileaeva, I.; Pegues, E. P.; Sentman, C. L.; Stephan, M. T. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol.2015, 33, 97–101.

    CAS  Google Scholar 

  163. [163]

    Dong, L. Y.; Li, Y. C.; Li, Z.; Xu, N.; Liu, P.; Du, H. Y.; Zhang, Y. M.; Huang, Y. Q.; Zhu, J. J.; Ren, G. C. et al. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl. Mater. Interfaces2018, 10, 9247–9256.

    CAS  Google Scholar 

  164. [164]

    Chen, M. C.; Lin, Z. W.; Ling, M. H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano2016, 10, 93–101.

    CAS  Google Scholar 

  165. [165]

    Mitragotri, S.; Anderson, D. G.; Chen, X.; Chow, E. K.; Ho, D.; Kabanov, A. V.; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano2015, 9, 6644–6654.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province of China for Excellent Young Scholars (No. BK20190084), the Young Elite Scientists Sponsorship Program by CAST and National Students’ platform for Innovation and Entrepreneurship Training Program (No. 201910291094Z) to T.J and the UCLA start-up package to Z.G.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bingfang He or Zhen Gu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Xu, G., Chen, G. et al. Progress in transdermal drug delivery systems for cancer therapy. Nano Res. 13, 1810–1824 (2020). https://doi.org/10.1007/s12274-020-2664-5

Download citation

Keywords

  • drug delivery
  • transdermal delivery
  • cancer therapy
  • chemotherapy
  • immunotherapy
  • combination therapy