Skip to main content

A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials

Abstract

Trivalent lanthanide (Ln3+) doped luminescent nanocrystals are promising for applications ranging from biosensor, lasing, super-resolution nanoscopy, information security and so on. Although the utility prospect is of great attractions, the light absorption of these lanthanide doped nanocrystals is inherently weak due to the electric dipole-forbidden 4f → 4f transitions. Even worse, the quantum yields of upconverison nanocrystals are very low, which will unavoidably hinder their further applications. In a typical lanthanide luminescent nanosystem, both sensitizers as light absorption centers and activators as light emitting centers are necessary and important for desired luminescence properties. Among various sensitization systems, only Yb3+ and Nd3+ are considered as the most efficient sensitizers. Thus, the corresponding excitation wavelengths are strictly limited around 980 and 808 nm. To enrich excitation wavelengths and boost luminescence intensity, exploring more sensitization units that possess larger absorption cross section, higher efficiency of energy transfer process and independent excitation is imperative and beneficial for the demands of different applications, such as broadened absorption in near infrared (NIR) region for higher conversion efficiency of solar cells, prolonged excitation wavelength to second near infrared windows region (NIR II, 1,000–1,700 nm) for in vivo fluorescence imaging with deeper tissue depth and higher spatial resolution, more orthogonal excitations and emissions to improve optical multiplexing, and so on. Therefore, in the review, we primarily conclude several major energy transfer mechanisms from sensitizers to activators. Then we present three kinds of sensitizers, including lanthanide ions, organic dyes and quantum dots (QDs), and introduce the newly designed sensitization system that allows us to exploit superior excitation wavelength and amplify luminescence intensity. Finally, several future challenges and opportunities for the sensitizing strategies are discussed in hope of directing and broadening the applications of lanthanide nanosystem.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev.2004, 104, 139–173.

    CAS  Google Scholar 

  2. [2]

    Fan, Y.; Liu, L.; Zhang, F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures. Nano Today2019, 25, 68–84.

    CAS  Google Scholar 

  3. [3]

    Chen, X.; Peng, D. F.; Ju, Q.; Wang, F. Photon upconversion in core-shell nanoparticles. Chem. Soc. Rev.2015, 44, 1318–1330.

    Google Scholar 

  4. [4]

    Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nano-structure. Chem. Soc. Rev.2015, 44, 1346–1378.

    CAS  Google Scholar 

  5. [5]

    Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev.2009, 38, 976–989.

    CAS  Google Scholar 

  6. [6]

    Yeh, D. C.; Sibley, W. A.; Suscavage, M. J. Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium-thorium fluoride glass. J. Appl. Phys.1988, 63, 4644–4650.

    CAS  Google Scholar 

  7. [7]

    Tanabe, S.; Yoshii, S.; Hirao, K.; Soga, N. Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses. Phys. Rev. B1992, 45, 4620–4625.

    CAS  Google Scholar 

  8. [8]

    Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature2010, 463, 1061–1065.

    CAS  Google Scholar 

  9. [9]

    Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science2005, 310, 462–465.

    CAS  Google Scholar 

  10. [10]

    Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol.2018, 13, 941–946.

    CAS  Google Scholar 

  11. [11]

    Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics2014, 8, 32–36.

    CAS  Google Scholar 

  12. [12]

    Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature2017, 543, 229–233.

    CAS  Google Scholar 

  13. [13]

    Zhan, Q. Q.; Liu, H. C.; Wang, B. J.; Wu, Q. S.; Pu, R.; Zhou, C.; Huang, B. R.; Peng, X. Y.; Ågren, H.; He, S. L. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun.2017, 8, 1058.

    Google Scholar 

  14. [14]

    Kostyuk, A. B.; Vorotnov, A. D.; Ivanov, A. V.; Volovetskiy, A. B.; Kruglov, A. V.; Sencha, L. M.; Liang, L. E.; Guryev, E. L.; Vodeneev, V. A.; Deyev, S. M. et al. Resolution and contrast enhancement of laser-scanning multiphoton microscopy using thulium-doped upconversion nanoparticles. Nano Res.2019, 12, 2933–2940.

    CAS  Google Scholar 

  15. [15]

    Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science2018, 359, 679–684.

    CAS  Google Scholar 

  16. [16]

    Fernandez-Bravo, A.; Yao, K. Y.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B. N.; Tajon, C. A.; Moretti, L.; Altoe, M. V.; Aloni, S. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol.2018, 13, 572–577.

    CAS  Google Scholar 

  17. [17]

    Chen, X.; Jin, L. M.; Kong, W.; Sun, T. Y.; Zhang, W. F.; Liu, X. H.; Fan, J.; Yu, S. F.; Wang, F. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun.2016, 7, 10304.

    CAS  Google Scholar 

  18. [18]

    Guo, Q. Y.; Wu, J. H.; Yang, Y. Q.; Liu, X. P.; Jia, J. B.; Dong, J.; Lan, Z.; Lin, J. M.; Huang, M. L.; Wei, Y. L. et al. High performance perovskite solar cells based on β-NaYF4: Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles. J. Power Sources2019, 426, 178–187.

    CAS  Google Scholar 

  19. [19]

    Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the downshifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun.2017, 8, 737.

    Google Scholar 

  20. [20]

    Zhang, H. X.; Fan, Y.; Pei, P.; Sun, C. X.; Lu, L. F.; Zhang, F. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding. Angew. Chem., Int. Ed.2019, 58, 10153–10157.

    CAS  Google Scholar 

  21. [21]

    Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol.2019, 37, 1322–1331.

    CAS  Google Scholar 

  22. [22]

    Liu, L.; Wang, S. F.; Zhao, B. Z.; Pei, P.; Fan, Y.; Li, X. M.; Zhang, F. Er3+ sensitized 1,530 nm to 1,180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew. Chem., Int. Ed.2018, 57, 7518–7522.

    CAS  Google Scholar 

  23. [23]

    Lei, X. L.; Li, R. F.; Tu, D. T.; Shang, X. Y.; Liu, Y.; You, W. W.; Sun, C. X.; Zhang, F.; Chen, X. Y. Intense near-infrared-II luminescence from NaCeF4: Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging. Chem. Sci.2018, 9, 4682–4688.

    CAS  Google Scholar 

  24. [24]

    Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc.2008, 130, 5642–5643.

    CAS  Google Scholar 

  25. [25]

    Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano2013, 7, 7200–7206.

    CAS  Google Scholar 

  26. [26]

    Shen, J.; Chen, G. Y.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G. Engineering the upconversion nanoparticle excitation wavelength: Cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater.2013, 1, 644–650.

    Google Scholar 

  27. [27]

    Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc.2017, 139, 3275–3282.

    CAS  Google Scholar 

  28. [28]

    Chen, Q. S.; Xie, X. J.; Huang, B. L.; Liang, L. L.; Han, S. Y.; Yi, Z. G.; Wang, Y.; Li, Y.; Fan, D. Y.; Huang, L. et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem., Int. Ed.2017, 56, 7605–7609.

    CAS  Google Scholar 

  29. [29]

    Zuo, J.; Li, Q. Q.; Xue, B.; Li, C. X.; Chang, Y. L.; Zhang, Y. L.; Liu, X. M.; Tu, L. P.; Zhang, H.; Kong, X. G. Employing shells to eliminate concentration quenching in photonic upconversion nano-structure. Nanoscale2017, 9, 7941–7946.

    CAS  Google Scholar 

  30. [30]

    Savchuk, O. A.; Carvajal, J. J.; Brites, C. D. S.; Carlos, L. D.; Aguilo, M.; Diaz, F. Upconversion thermometry: A new tool to measure the thermal resistance of nanoparticles. Nanoscale2018, 10, 6602–6610.

    CAS  Google Scholar 

  31. [31]

    Zhang, H. X.; Jia, T. Q.; Chen, L.; Zhang, Y. C.; Zhang, S.; Feng, D. H.; Sun, Z. R.; Qiu, J. R. Depleted upconversion luminescence in NaYF4: Yb3+, Tm3+ nanoparticles via simultaneous two-wavelength excitation. Phys. Chem. Chem. Phys.2017, 19, 17756–17764.

    CAS  Google Scholar 

  32. [32]

    Zhang, M. R.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z. L.; Wei, J. J.; Gao, Y.; Zhou, S. Y.; Li, X. J.; Chen, X. Y. A new class of blue-LED-excitable NIR-II luminescent nanoprobes based on lanthanide-doped CaS nanoparticles. Angew. Chem., Int. Ed.2019, 58, 9556–9560.

    CAS  Google Scholar 

  33. [33]

    Sun, T. Y.; Chen, X.; Jin, L. M.; Li, H. W.; Chen, B.; Fan, B.; Moine, B.; Qiao, X.; Fan, X. P.; Tsang, S. W. et al. Broadband Ce(III)-sensitized quantum cutting in core-shell nanoparticles: Mechanistic investigation and photovoltaic application. J. Phys. Chem. Lett.2017, 8, 5099–5104.

    CAS  Google Scholar 

  34. [34]

    Zuo, J.; Tu, L. P.; Li, Q. Q.; Feng, Y. S.; Que, I.; Zhang, Y. L.; Liu, X. M.; Xue, B.; Cruz, L. J.; Chang, Y. L. et al. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided “Off-On” therapy. ACS Nano2018, 12, 3217–3225.

    CAS  Google Scholar 

  35. [35]

    Cheng, X. W.; Pan, Y.; Yuan, Z.; Wang, X. W.; Su, W. H.; Yin, L. S.; Xie, X. J.; Huang, L. Er3+ sensitized photon upconversion nanocrystals. Adv. Funct. Mater.2018, 28, 1800208.

    Google Scholar 

  36. [36]

    Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics2012, 6, 560–564.

    CAS  Google Scholar 

  37. [37]

    Xue, B.; Wang, D.; Tu, L. P.; Sun, D. P.; Jing, P. T.; Chang, Y. L.; Zhang, Y. L.; Liu, X. M.; Zuo, J.; Song, J. et al. Ultrastrong absorption meets ultraweak absorption: Unraveling the energy-dissipative routes for dye-sensitized upconversion luminescence. J. Phys. Chem. Lett.2018, 9, 4625–4631.

    CAS  Google Scholar 

  38. [38]

    Wang, X. D.; Valiev, R. R.; Ohulchanskyy, T. Y.; Ågren, H.; Yang, C. H.; Chen, G. Y. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev.2017, 46, 4150–4167.

    CAS  Google Scholar 

  39. [39]

    Zhou, D. L.; Sun, R.; Xu, W.; Ding, N.; Li, D. Y.; Chen, X.; Pan, G. C.; Bai, X.; Song, H. W. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications. Nano Lett.2019, 19, 6904–6913.

    CAS  Google Scholar 

  40. [40]

    Swabeck, J. K.; Fischer, S.; Bronstein, N. D.; Alivisatos, A. P. Broadband sensitization of lanthanide emission with indium phosphide quantum dots for visible to near-infrared downshifting. J. Am. Chem. Soc.2018, 140, 9120–9126.

    CAS  Google Scholar 

  41. [41]

    Song, D.; Chi, S. Y.; Li, X.; Wang, C. X.; Li, Z.; Liu, Z. H. Upconversion system with quantum dots as sensitizer: Improved photoluminescence and PDT efficiency. ACS Appl. Mater. Interfaces2019, 11, 41100–41108.

    CAS  Google Scholar 

  42. [42]

    Garfield, D. J.; Borys, N. J.; Hamed, S. M.; Torquato, N. A.; Tajon, C. A.; Tian, B. N.; Shevitski, B.; Barnard, E. S.; Suh, Y. D.; Aloni, S. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics2018, 12, 402–407.

    CAS  Google Scholar 

  43. [43]

    Zhang, H. X.; Jia, T. Q.; Shang, X. Y.; Zhang, S. A.; Sun, Z. R.; Qiu, J. R. Mechanisms of the blue emission of NaYF4:Tm3+ nanoparticles excited by an 800 nm continuous wave laser. Phys. Chem. Chem. Phys.2016, 18, 25905–25914.

    CAS  Google Scholar 

  44. [44]

    Zuo, J.; Sun, D. P.; Tu, L. P.; Wu, Y. N.; Cao, Y. H.; Xue, B.; Zhang, Y. L.; Chang, Y. L.; Liu, X. M.; Kong, X. G. et al. Precisely tailoring upconversion dynamics via energy migration in core-shell nano-structures. Angew. Chem., Int. Ed.2018, 57, 3054–3058.

    CAS  Google Scholar 

  45. [45]

    Yan, L.; Zhou, B.; Song, N.; Liu, X. L.; Huang, J. S.; Wang, T.; Tao, L. L.; Zhang, Q. Y. Self-sensitization induced upconversion of Er3+ in core- shell nanoparticles. Nanoscale2018, 10, 17949–17957.

    CAS  Google Scholar 

  46. [46]

    Sun, T. Y.; Li, Y. H.; Ho, W. L.; Zhu, Q.; Chen, X.; Jin, L. M.; Zhu, H. M.; Huang, B. L.; Lin, J.; Little, B. E. et al. Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion.Nat. Commun.2019, 10, 1811.

    Google Scholar 

  47. [47]

    Xie, X. J.; Gao, N. Y.; Deng, R. R.; Sun, Q.; Xu, Q. H.; Liu, X. G. Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles. J. Am. Chem. Soc.2013, 135, 12608–12611.

    CAS  Google Scholar 

  48. [48]

    Wen, S. H.; Zhou, J. J.; Schuck, P. J.; Suh, Y. D.; Schmidt, T. W.; Jin, D. Y. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics2019, 13, 828–838.

    CAS  Google Scholar 

  49. [49]

    Liang, L. L.; Qin, X.; Zheng, K. Z.; Liu, X. G. Energy flux manipulation in upconversion nanosystems. Acc. Chem. Res.2019, 52, 228–236.

    CAS  Google Scholar 

  50. [50]

    Chen, G. Y.; Shao, W.; Valiev, R. R.; Ohulchanskyy, T. Y.; He, G. S.; Ågren, H.; Prasad, P. N. Efficient broadband upconversion of near-infrared light in dye-sensitized core/shell nanocrystals. Adv. Opt. Mater.2016, 4, 1760–1766.

    CAS  Google Scholar 

  51. [51]

    Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol.2013, 8, 729–734.

    CAS  Google Scholar 

  52. [52]

    Gu, Y. Y.; Guo, Z. Y.; Yuan, W.; Kong, M. Y.; Liu, Y. L.; Liu, Y. T.; Gao, Y. L.; Feng, W.; Wang, F.; Zhou, J. J. et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics2019, 13, 525–531.

    CAS  Google Scholar 

  53. [53]

    Chan, E. M. Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications. Chem. Soc. Rev.2015, 44, 1653–1679.

    CAS  Google Scholar 

  54. [54]

    Levy, E. S.; Tajon, C. A.; Bischof, T. S.; Iafrati, J.; Fernandez-Bravo, A.; Garfield, D. J.; Chamanzar, M.; Maharbiz, M. M.; Sohal, V. S.; Schuck, P. J. et al. Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging. ACS Nano2016, 10, 8423–8433.

    CAS  Google Scholar 

  55. [55]

    Chen, C. C.; Wang, F.; Wen, S. H.; Su, Q. P.; Wu, M. C. L.; Liu, Y. T.; Wang, B. M.; Li, D.; Shan, X. C.; Kianinia, M. et al. Multiphoton near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun.2018, 9, 3290.

    Google Scholar 

  56. [56]

    Lei, L.; Xia, H.; Lim, C. K.; Xu, S. Q.; Wang, K.; Du, Y. P.; Prasad, P. N. Modulation of surface energy transfer cascade for reversible photoluminescence pH sensing. Chem. Mater.2019, 31, 8121–8128.

    CAS  Google Scholar 

  57. [57]

    Kim, S. Y.; Woo, K.; Lim, K.; Lee, K.; Jang, H. S. Highly bright multicolor tunable ultrasmall β-Na(Y, Gd)F4: Ce, Tb, Eu/α-NaYF4 core/shell nanocrystals. Nanoscale2013, 5, 9255–9263.

    CAS  Google Scholar 

  58. [58]

    Zhou, B.; Tao, L. L.; Chai, Y.; Lau, S. P.; Zhang, Q. Y.; Tsang, Y. H. Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure. Angew. Chem. Int. Ed.2016, 55, 12356–12360.

    CAS  Google Scholar 

  59. [59]

    Chen, X.; Jin, L. M.; Sun, T. Y.; Kong, W.; Yu, S. F.; Wang, F. Energy migration upconversion in Ce(III)-doped heterogeneous core-shell-shell nanoparticles. Small2017, 13, 1701479.

    Google Scholar 

  60. [60]

    Chen, G. Y.; Damasco, J.; Qiu, H. L.; Shao, W.; Ohulchanskyy, T. Y.; Valiev, R. R.; Wu, X.; Han, G.; Wang, Y.; Yang, C. H. et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett.2015, 15, 7400–7407.

    CAS  Google Scholar 

  61. [61]

    Wang, D.; Wang, D. P.; Kuzmin, A.; Pliss, A.; Shao, W.; Xia, J.; Qu, J. L.; Prasad, P. N. ICG-sensitized NaYF4: Er nanostructure for theranostics. Adv. Opt. Mater.2018, 6, 1701142.

    Google Scholar 

  62. [62]

    Xu, J. T.; Gulzar, A.; Liu, Y. H.; Bi, H. T.; Gai, S. L.; Liu, B.; Yang, D.; He, F.; Yang, P. P. Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small2017, 13, 1701841.

    Google Scholar 

  63. [63]

    Hazra, C.; Ullah, S.; Serge Correales, Y. E.; Caetano, L. G.; Ribeiro, S. J. L. Enhanced NIR-I emission from water-dispersible NIR-II dye-sensitized core/active shell upconverting nanoparticles. J. Mater. Chem. C2018, 6, 4777–4785.

    CAS  Google Scholar 

  64. [64]

    Li, B. H.; Lu, L. F.; Zhao, M. Y.; Lei, Z. H.; Zhang, F. An efficient 1,064 nm NIR-II excitation fluorescent molecular dye for deep- tissue high-resolution dynamic bioimaging. Angew. Chem., Int. Ed.2018, 57, 7483–7487.

    CAS  Google Scholar 

  65. [65]

    Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng.2017, 1, 0010.

    CAS  Google Scholar 

  66. [66]

    Zheng, W.; Huang, P.; Gong, Z. L.; Tu, D. T.; Xu, J.; Zou, Q. L.; Li, R. F.; You, W. W.; Bünzli, J. C. G.; Chen, X. Y. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nat. Commun.2018, 9, 3462.

    Google Scholar 

  67. [67]

    Franke, D.; Harris, D. K.; Chen, O.; Bruns, O. T.; Carr, J. A.; Wilson, M. W.; Bawendi, M. G. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun.2016, 7, 12749.

    CAS  Google Scholar 

  68. [68]

    Klik, M. A. J.; Gregorkiewicz, T.; Bradley, I. V.; Wells, J. P. R. Optically induced deexcitation of rare-earth ions in a semiconductor matrix. Phys. Rev. Lett.2002, 89, 227401.

    CAS  Google Scholar 

  69. [69]

    Martín-Rodríguez, R.; Geitenbeek, R.; Meijerink, A. Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J. Am. Chem. Soc.2013, 135, 13668–13671.

    Google Scholar 

  70. [70]

    Zhou, D. L.; Liu, D. L.; Pan, G. C.; Chen, X.; Li, D. Y.; Xu, W.; Bai, X.; Song, H. W. Cerium and ytterbium codoped halide perovskite quantum dots: A novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater.2017, 29, 1704149.

    Google Scholar 

  71. [71]

    Milstein, T. J.; Kroupa, D. M.; Gamelin, D. R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett.2018, 18, 3792–3799.

    CAS  Google Scholar 

  72. [72]

    Zhou, J. J.; Deng, J. Y.; Zhu, H. M.; Chen, X. Y.; Teng, Y.; Jia, H.; Xu, S. Q.; Qiu, J. R. Up-conversion luminescence in LaF3: Ho3+ via two-wavelength excitation for use in solar cells. J. Mater. Chem. C2013, 1, 8023–8027.

    CAS  Google Scholar 

  73. [73]

    Li, X. M.; Guo, Z. Z.; Zhao, T. C.; Lu, Y.; Zhou, L.; Zhao, D. Y.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem., Int. Ed.2016, 55, 2464–2469.

    CAS  Google Scholar 

  74. [74]

    You, W. W.; Tu, D. T.; Li, R. F.; Zheng, W.; Chen, X. Y. “Chameleonlike” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications. Nano Res.2019, 12, 1417–1422.

    CAS  Google Scholar 

  75. [75]

    Wang, Y.; Zheng, K. Z.; Song, S. Y.; Fan, D. Y.; Zhang, H. J.; Liu, X. G. Remote manipulation of upconversion luminescence. Chem. Soc. Rev.2018, 47, 6473–6485.

    CAS  Google Scholar 

  76. [76]

    Yin, X. M.; Wang, H.; Tian, Y.; Xing, M. M.; Fu, Y.; Luo, X. X. Three primary color emissions from single multilayered nanocrystals. Nanoscale2018, 10, 9673–9678.

    CAS  Google Scholar 

  77. [77]

    Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun.2018, 9, 2415.

    Google Scholar 

  78. [78]

    Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nano-particles. J. Am. Chem. Soc.2013, 135, 18920–18929.

    CAS  Google Scholar 

  79. [79]

    Zhang, H.; Li, Y. J.; Lin, Y. C.; Huang, Y.; Duan, X. F. Composition tuning the upconversion emission in NaYF4: Yb/Tm hexaplate nano-crystals. Nanoscale2011, 3, 963–966.

    CAS  Google Scholar 

  80. [80]

    Liu, G. K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev.2015, 44, 1635–1652.

    CAS  Google Scholar 

  81. [81]

    Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev.2015, 44, 1416–1448.

    CAS  Google Scholar 

  82. [82]

    Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev.2014, 114, 2343–2389.

    CAS  Google Scholar 

  83. [83]

    Zhan, Q. Q.; Qian, J.; Liang, H. J.; Somesfalean, G.; Wang, D.; He, S. L.; Zhang, Z. G.; Andersson-Engels, S. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano2011, 5, 3744–3757.

    CAS  Google Scholar 

  84. [84]

    Zhan, Q. Q.; He, S. L.; Qian, J.; Cheng, H.; Cai, F. H. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield. Theranostics2013, 3, 306–316.

    Google Scholar 

  85. [85]

    Ortgies, D. H.; Tan, M. L.; Ximendes, E. C.; Del Rosal, B.; Hu, J.; Xu, L.; Wang, X. D.; Martín Rodríguez, E.; Jacinto, C.; Fernandez, N. et al. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano2018, 12, 4362–4368.

    CAS  Google Scholar 

  86. [86]

    Cao, C.; Xue, M.; Zhu, X. J.; Yang, P. Y.; Feng, W.; Li, F. Y. Energy transfer highway in Nd3+-sensitized nanoparticles for efficient near-infrared bioimaging. ACS Appl. Mater. Interfaces2017, 9, 18540–18548.

    CAS  Google Scholar 

  87. [87]

    Petit, V.; Camy, P.; Doualan, J. L.; Moncorgé, R. CW and tunable laser operation of Yb3+ in Nd: Yb: CaF2. Appl. Phys. Lett.2006, 88, 051111.

    Google Scholar 

  88. [88]

    Liu, Y. X; Wang, D. S.; Shi, J. X.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew. Chem., Int. Ed.2013, 52, 4366–4369.

    CAS  Google Scholar 

  89. [89]

    Zhou, J. J.; Shirahata, N.; Sun, H. T.; Ghosh, B.; Ogawara, M.; Teng, Y.; Zhou, S. F.; Chu, R. G. S.; Fujii, M.; Qiu, J. R. Efficient dual-modal NIR-to-NIR emission of rare earth ions co-doped nanocrystals for biological fluorescence imaging. J. Phys. Chem. Lett.2013, 4, 402–408.

    CAS  Google Scholar 

  90. [90]

    Deng, R. R.; Qin, F.; Chen, R. F.; Huang, W.; Hong, M. H.; Liu, X. G. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol.2015, 10, 237–242.

    CAS  Google Scholar 

  91. [91]

    He, F.; Yang, G. X.; Yang, P. P.; Yu, Y. X.; Lv, R. C.; Li, C. X.; Dai, Y. L.; Gai, S. L.; Lin, J. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform. Adv. Funct. Mater.2015, 25, 3966–3976.

    CAS  Google Scholar 

  92. [92]

    Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res.2017, 10, 3434–3446.

    CAS  Google Scholar 

  93. [93]

    Wang, H.; Liu, Y.; Wang, Z. H.; Yang, M.; Gu, Y. Q. 808 nm-light-excited upconversion nanoprobe based on LRET for the ratiometric detection of nitric oxide in living cancer cells. Nanoscale2018, 10, 10641–10649.

    CAS  Google Scholar 

  94. [94]

    Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1,525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed.2014, 53, 12086–12090.

    CAS  Google Scholar 

  95. [95]

    Dong, H.; Sun, L. D.; Feng, W.; Gu, Y. Y.; Li, F. Y.; Yan, C. H. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano2017, 11, 3289–3297.

    CAS  Google Scholar 

  96. [96]

    Liu, B.; Li, C. X.; Yang, P. P.; Hou, Z. Y.; Lin, J. 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications. Adv. Mater.2017, 29, 1605434.

    Google Scholar 

  97. [97]

    Cheng, X. W.; Ge, H.; Wei, Y.; Zhang, K.; Su, W. H.; Zhou, J. M.; Yin, L. S.; Zhan, Q. Q.; Jing, S.; Huang, L. Design for brighter photon upconversion emissions via energy level overlap of lanthanide ions. ACS Nano2018, 12, 10992–10999.

    CAS  Google Scholar 

  98. [98]

    Xie, S. W.; Gong, G.; Song, Y.; Tan, H. H.; Zhang, C. F.; Li, N.; Zhang, Y. X.; Xu, L. J.; Xu, J. X.; Zheng, J. Design of novel lanthanide-doped core-shell nanocrystals with dual up-conversion and down-conversion luminescence for anti-counterfeiting printing. Dalton Trans.2019, 48, 6971–6983.

    CAS  Google Scholar 

  99. [99]

    Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics2014, 8, 723–730.

    CAS  Google Scholar 

  100. [100]

    Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater.2016, 15, 235–242.

    CAS  Google Scholar 

  101. [101]

    Ding, F.; Fan, Y.; Sun, Y.; Zhang, F. Beyond 1,000 nm emission wavelength: Recent advances in organic and inorganic emitters for deep-tissue molecular imaging. Adv. Healthc. Mater.2019, 8, 1900260.

    Google Scholar 

  102. [102]

    Zhang, X. B.; Chen, W. W.; Xie, X. Y.; Li, Y. Y.; Chen, D. S.; Chao, Z. C.; Liu, C. H.; Ma, H. B.; Liu, Y.; Ju, H. X. Boosting luminance energy transfer efficiency in upconversion nanoparticles with an energy-concentrating zone. Angew. Chem., Int. Ed.2019, 58, 12117–12122.

    CAS  Google Scholar 

  103. [103]

    Ke, J. X.; Lu, S.; Shang, X. Y.; Liu, Y.; Guo, H. H.; You, W. W.; Li, X. J.; Xu, J.; Li, R. F.; Chen, Z. et al. A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection. Adv. Sci.2019, 6, 1901874.

    CAS  Google Scholar 

  104. [104]

    Zou, X. M.; Zhou, X. B.; Cao, C.; Lu, W. Y.; Yuan, W.; Liu, Q.Y.; Feng, W.; Li, F. Y. Dye-sensitized upconversion nanocomposites for ratiometric semi-quantitative detection of hypochlorite in vivo. Nanoscale2019, 11, 2959–2965.

    CAS  Google Scholar 

  105. [105]

    Zhang, D. L.; Wang, L. L.; Yuan, X.; Gong, Y. J.; Liu, H. W.; Zhang, J.; Zhang, X. B.; Liu, Y. L.; Tan, W. H. Naked-eye readout of analyte-induced NIR fluorescence responses by an initiation-input-transduction nanoplatform. Angew. Chem., Int. Ed.2020, 59, 695–699.

    Google Scholar 

  106. [106]

    Liang, T.; Li, Z.; Wang, P. P.; Zhao, F. Z.; Liu, J. Z.; Liu, Z. H. Breaking through the signal-to-background limit of upconversion nanoprobes using a target-modulated sensitizing switch. J. Am. Chem. Soc.2018, 140, 14696–14703.

    CAS  Google Scholar 

  107. [107]

    Shao, W.; Chen, G. Y.; Kuzmin, A.; Kutscher, H. L.; Pliss, A.; Ohulchanskyy, T. Y.; Prasad, P. N. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J. Am. Chem. Soc.2016, 138, 16192–16195.

    CAS  Google Scholar 

  108. [108]

    Lee, J.; Yoo, B.; Lee, H.; Cha, G. D.; Lee, H. S.; Cho, Y.; Kim, S. Y.; Seo, H.; Lee, W.; Son, D. et al. Ultra-wideband multi-dye-sensitized upconverting nanoparticles for information security application. Adv. Mater.2017, 29, 1603169.

    Google Scholar 

  109. [109]

    Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano2017, 11, 4133–4144.

    CAS  Google Scholar 

  110. [110]

    Mukherjee, P.; Sloan, R. F.; Shade, C. M.; Waldeck, D. H.; Petoud, S. A postsynthetic modification of II-VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J. Phys. Chem. C2013, 117, 14451–14460.

    CAS  Google Scholar 

  111. [111]

    Chengelis, D. A.; Yingling, A. M.; Badger, P. D.; Shade, C. M.; Petoud, S. Incorporating lanthanide cations with cadmium selenide nanocrystals: A strategy to sensitize and protect Tb(III). J. Am. Chem. Soc.2005, 127, 16752–16753.

    CAS  Google Scholar 

  112. [112]

    Creutz, S. E.; Fainblat, R.; Kim, Y.; De Siena, M. C.; Gamelin, D. R. A selective cation exchange strategy for the synthesis of colloidal Yb3+-doped chalcogenide nanocrystals with strong broadband visible absorption and long-lived near-infrared emission. J. Am. Chemi. Soc.2017, 139, 11814–11824.

    CAS  Google Scholar 

  113. [113]

    Hu, Q. S.; Li, Z.; Tan, Z. F.; Song, H. B.; Ge, C.; Niu, G. D.; Han, J. T.; Tang, J. Rare earth ion-doped CsPbBr3 nanocrystals. Adv. Opt. Mater.2018, 6, 1700864.

    Google Scholar 

  114. [114]

    Pan, G. C.; Bai, X.; Yang, D. W.; Chen, X.; Jing, P. T.; Qu, S. N.; Zhang, L. J.; Zhou, D. L.; Zhu, J. Y.; Xu, W. et al. Doping lanthanide into perovskite nanocrystals: Highly improved and expanded optical properties. Nano Lett.2017, 17, 8005–8011.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D program of China (No. 2017YFA0207303), the National Natural Science Foundation of China (Nos. 21725502 and 21701027), and Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 17JC1400100).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chen, ZH., Liu, X. et al. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Res. 13, 1795–1809 (2020). https://doi.org/10.1007/s12274-020-2661-8

Download citation

Keywords

  • lanthanide luminescence
  • new sensitizers
  • organic dyes
  • quantum dots