ALD growth of ultra-thin Co layers on the topological insulator Sb2Te3


Taking the full advantage of the conformal growth characterizing atomic layer deposition (ALD), the possibility to grow Co thin films, with thickness from several tens down to few nanometers on top of a granular topological insulator (TI) Sb2Te3 film, exhibiting a quite high surface roughness (2–5 nm), was demonstrated. To study the Co growth on the Sb2Te3 substrate, we performed simultaneous Co depositions also on sputtered Pt substrates for comparison. We conducted a thorough chemical-structural characterization of the Co/Sb2Te3 and Co/Pt heterostructures, confirming for both cases, not only an excellent conformality, but also the structural continuity of the Co layers. X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM) analyses evidenced that Co on Sb2Te3 grows preferentially oriented along the [00ℓ] direction, following the underlying rhombohedric substrate. Differently, Co crystallizes in a cubic phase oriented along the [111] direction when deposited on Pt. This work shows that, in case of deposition of crystalline materials, the ALD surface selectivity and conformality can be extended to the definition of local epitaxy, where in-plane ordering of the crystal structure and mosaicity of the developed crystallized grains are dictated by the underlying substrate. Moreover, a highly sharp and chemically-pure Co/Sb2Te3 interface was evidenced, which is promising for the application of this growth process for spintronics.

This is a preview of subscription content, access via your institution.


  1. [1]

    Knoops, H. C. M.; Potts, S. E.; Bol, A. A.; Kessels, W. M. M. Atomic layer deposition. In Handbook of Crystal Growth: Thin Films and Epitaxy; 2nd ed. Kuech, T. F., Ed.; Elsevier: Waltham, MA; UK, 2015; pp 1101–1134.

    Chapter  Google Scholar 

  2. [2]

    Soumyanarayanan, A.; Reyren, N.; Fert, A.; Panagopoulos, C. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature2016, 539, 509–517.

    CAS  Article  Google Scholar 

  3. [3]

    Peranio, N.; Winkler, M.; Bessas, D.; Aabdin, Z.; König, J.; Böttner, H.; Hermann, R. P.; Eibl, O. Room-temperature MBE deposition, thermoelectric properties, and advanced structural characterization of binary Bi2Te3 and Sb2Te3 thin films. J. Alloys Compd.2012, 521, 163–173.

    CAS  Article  Google Scholar 

  4. [4]

    Wang, Y.; Zhu, D. P.; Wu, Y.; Yang, Y. M.; Yu, J. W.; Ramaswamy, R.; Mishra, R.; Shi, S. Y.; Elyasi, M.; Teo, K. L. et al. Room temperature magnetization switching in topological insulator-ferromagnet hetero-structures by spin-orbit torques. Nat. Commun.2017, 8, 1364.

    CAS  Article  Google Scholar 

  5. [5]

    Mellnik, A. R.; Lee, J. S.; Richardella, A.; Grab, J. L.; Mintun, P. J.; Fischer, M. H.; Vaezi, A.; Manchon, A.; Kim, E. A.; Samarth, N. et al. Spin-transfer torque generated by a topological insulator. Nature2014, 511, 449–451.

    CAS  Article  Google Scholar 

  6. [6]

    Longo, M.; Cecchi, S.; Selmo, S.; Fanciulli, M.; Wiemer, C.; Battaglia, J. L.; Saci, A.; Kusiak, A. MOCVD growth and thermal analysis of Sb2Te3 thin films and nanowires. In Proceedings of 2075 1st Workshop Nanotechnology in Instrumentation and Measurement, Lecce, Italy, 2015, pp 150–154.

  7. [7]

    Cecchini, R.; Mantovan, R.; Wiemer, C.; Nasi, L.; Lazzarini, L.; Longo, M. Weak antilocalization in granular Sb2Te3 thin films deposited by MOCVD. Phys. Status Solidi RRL — Rapid Res. Lett.2018, 12, 1800155.

    Article  Google Scholar 

  8. [8]

    Mantovan, R.; Vangelista, S.; Kutrzeba-Kotowska, B.; Lamperti, A.; Manca, N.; Pellegrino, L.; Fanciulli, M. Fe3−δO4/MgO/Co magnetic tunnel junctions synthesized by full in situ atomic layer and chemical vapour deposition. J. Phys. D: Appl. Phys.2014, 47, 102002.

    Article  Google Scholar 

  9. [9]

    Martin, M. B.; Dlubak, B.; Weatherup, R. S.; Yang, H.; Deranlot, C.; Bouzehouane, K.; Petroff, F.; Anane, A.; Hofmann, S.; Robertson, J. et al. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACSNano2014, 8, 7890–7895.

    CAS  Google Scholar 

  10. [10]

    Longo, E.; Wiemer, C.; Cecchini, R.; Longo, M.; Lamperti, A.; Khanas, A.; Zenkevich, A.; Fanciulli, M.; Mantovan, R. Chemical, structural and magnetic properties of the Fe/Sb2Te3 interface. J. Magn. Magn. Mater.2019, 474, 632–636.

    CAS  Article  Google Scholar 

  11. [11]

    Walsh, L. A.; Smyth, C. M.; Barton, A. T.; Wang, Q. X.; Che, Z. F.; Yue, R. Y.; Kim, J.; Kim, M. J.; Wallace, R. M.; Hinkle, C. L. Interface chemistry of contact metals and ferromagnets on the topological insulator Bi2Se3. J. Phys. Chem. C2017, 121, 23551–23563.

    CAS  Article  Google Scholar 

  12. [12]

    Majumder, S.; Jarvis, K.; Banerjee, S. K.; Kavanagh, K. L. Interfacial reactions at Fe/topological insulator spin contacts. J. Vac. Sci. Technol. B2017, 35, 04F105.

    Article  Google Scholar 

  13. [13]

    Kerrigan, M. M.; Klesko, J. P.; Rupich, S. M.; Dezelah, C. L.; Kanjolia, R. K.; Chabal, Y. J.; Winter, C. H. Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. J. Chem. Phys.2017, 146, 052813.

    Article  Google Scholar 

  14. [14]

    Kerrigan, M. M.; Klesko, J. P.; Winter, C. H. Low temperature, selective atomic layer deposition of cobalt metal films using bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and alkylamine precursors. Chem. Mater.2017, 29, 7458–7466.

    CAS  Article  Google Scholar 

  15. [15]

    Klesko, J. P.; Kerrigan, M. M.; Winter, C. H. Low temperature thermal atomic layer deposition of cobalt metal films. Chem. Mater.2016, 28, 700–703.

    CAS  Article  Google Scholar 

  16. [16]

    Taylor, A.; Floyd, R. W. Precision measurements of lattice parameters of non-cubic crystals. Acta Cryst.1950, 3, 285–289.

    CAS  Article  Google Scholar 

  17. [17]

    Kuznetsov, V. G.; Sokolova, M. A.; Palkina, K. K.; Popova, Z. V. The cobalt-sulfur system. Inorg. Mater.1965, 1, 617–632.

    Google Scholar 

  18. [18]

    Lamperti, A.; Ahn, S. M.; Ocker, B.; Mantovan, R.; Ravelosona, D. Interface width evaluation in thin layered CoFeB/MgO multilayers including Ru or Ta buffer layer by X-ray reflectivity. Thin Solid Films2013, 533, 79–82.

    CAS  Article  Google Scholar 

  19. [19]

    Wiemer, C.; Ferrari, S.; Fanciulli, M.; Pavia, G.; Lutterotti, L. Combining grazing incidence X-ray diffraction and X-ray reflectivity for the evaluation of the structural evolution of HfO2 thin films with annealing. Thin Solid Films2014, 450, 134–137.

    Article  Google Scholar 

  20. [20]

    Ono, L. K.; Yuan, B.; Heinrich, H.; Cuenya, B. R. Formation and thermal stability of platinum oxides on size-selected platinum nano-particles: Support effects. J. Phys. Chem. C2010, 114, 22119–22133.

    CAS  Article  Google Scholar 

  21. [21]

    Ko, Y. K.; Park, D. S.; Seo, B. S.; Yang, H. J.; Shin, H. J.; Kim, J. Y.; Lee, J. H.; Lee, W. H.; Reucroft, P. J.; Lee, J. G. Studies of cobalt thin films deposited by sputtering and MOCVD. Mater. Chem. Phys.2003, 80, 560–564.

    CAS  Article  Google Scholar 

  22. [22]

    Dynowska, E.; Pelka, J. B.; Klinger, D.; Minikayev, R.; Bartnik, A.; Dluzewski, P.; Jakubowski, M.; Klepka, M.; Petruczik, A.; Seeck, O. H. et al. Structural investigation of ultrathin Pt/Co/Pt trilayer films under EUV irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At.2015, 364, 33–39.

    CAS  Article  Google Scholar 

  23. [23]

    Singh, M.; Barkei, M.; Inden, G.; Bhan, S. High-temperature X-ray diffraction study on Co75 Sn25 alloy. Phys. Status Solidi A: Applied Research, 1985, 87, 165–168.

    CAS  Article  Google Scholar 

  24. [24]

    Delabie, A.; Puurunen, R. L.; Brijs, B.; Caymax, M.; Conard, T.; Onsia, B.; Richard, O.; Vandervorst, W.; Zhao, C.; Heyns, M. M. et al. Atomic layer deposition of hafnium oxide on germanium substrates. J. Appl. Phys.2005, 97, 064104.

    Article  Google Scholar 

  25. [25]

    Debernardi, A.; Wiemer, C.; Fanciulli, M. Epitaxial phase of hafnium dioxide for ultrascaled electronics. Phys. Rev. B2007, 76, 155405.

    Article  Google Scholar 

  26. [26]

    Ohtake, M.; Yabuhara, O.; Higuchi, J.; Futamoto, M. Preparation and characterization of Co single-crystal thin films with hcp, fcc and bcc structures. J. Appl. Phys.2011, 109, 07C105.

    Article  Google Scholar 

Download references


We acknowledge the MP1402-Hooking together the European research in atomic layer deposition (HERALD) COST action and the Horizon 2020 project SKYTOP “Skyrmion-Topological Insulator and Weyl Semimetal Technology” (FETPROACT-2018-01, n. 824123). Efforts at Wayne State University were supported by the U.S. National Science Foundation (Grant No. CHE-1607973) and EMD Performance Materials.

Author information



Corresponding authors

Correspondence to Roberto Mantovan or Claudia Wiemer.

Additional information


The authors declare no competing financial interests.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Longo, E., Mantovan, R., Cecchini, R. et al. ALD growth of ultra-thin Co layers on the topological insulator Sb2Te3. Nano Res. 13, 570–575 (2020).

Download citation


  • atomic layer deposition
  • X-ray diffraction
  • Co-fcc
  • Co-hcp
  • antimony telluride
  • metal organic chemical vapor deposition
  • spintronics