Skip to main content

Dynamic observation of in-plane h-BN/graphene heterostructures growth on Ni(111)


The lateral incorporation of graphene and hexagonal boron nitride (h-BN) onto a substrate surface creates in-plane h-BN/graphene heterostructures, which have promising applications in novel two-dimensional electronic and photoelectronic devices. The quality of h-BN/graphene domain boundaries depends on their orientation, which is crucial for device performances. Here, the heteroepitaxial growth of graphene along the edges of h-BN domains on Ni(111) surfaces as well as the growth dynamics of h-BN using chemical vapor deposition (CVD) are in situ investigated by surface imaging measurements. The nucleating seed effect of h-BN has been revealed, which contributes to the single orientation of heterostructures with epitaxial stitching. Further, the growth of h-BN prior to that of graphene is essential to obtain high-quality in-plane h-BN/graphene heterostructures on Ni(111). The “compact to fractal” shape transition of h-BN domains appears with the increasing surface concentration of the growth blocks, suggesting that the dynamic growth mechanism follows diffusion-limited aggregation (DLA) but not reaction-limited aggregation (RLA). Our results provide insights into the synthesis of well-defined h-BN/graphene heterostructures and deep understanding of the growth dynamics of h-BN on metal surfaces.

This is a preview of subscription content, access via your institution.


  1. [1]

    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Aroadmap for graphene. Natur.2012, 490, 192–200.

    CAS  Google Scholar 

  2. [2]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Scienc.2004, 306, 666–669.

    CAS  Google Scholar 

  3. [3]

    Kubota Y.; Watanabe K.;Tsuda O.;Taniguchi T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Scienc 2007. 317, 932–934

    CAS  Google Scholar 

  4. [4]

    Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev.2014, 43, 934–959.

    CAS  Google Scholar 

  5. [5]

    Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano2010, 4. 2979–2993.

    CAS  Google Scholar 

  6. [6]

    Chang, C. K.; Kataria, S.; Kuo, C. C.; Ganguly, A.; Wang, B. Y.; Hwang, J. Y.; Huang, K. J.; Yang, W. H.; Wang, S. B.; Chuang, C. H. et al. Band gap engineering of chemical vapor deposited graphene by in sit. BN doping. ACS Nan.2013, 7, 1333–1341.

    CAS  Google Scholar 

  7. [7]

    Bhowmick, S.; Singh, A. K.; Yakobson, B. I. Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. C2011, 115. 9889–9893.

    CAS  Google Scholar 

  8. [8]

    Ponomarenko, L. A.; Geim, A. K.; Zhukov, A. A.; Jalil, R.; Morozov, S. V.; Novoselov, K. S.; Grigorieva, I. V.; Hill, E. H.; Cheianov, V. V.; Fal’ko, V. I. et al. Tunable metal-insulator transition in double-layer graphene heterostructures. Nat. Phys.2011, 7. 958–961.

    CAS  Google Scholar 

  9. [9]

    Fiori, G.; Betti, A.; Bruzzone, S.; Iannaccone, G. Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nan.2012, 6, 2642–2648.

    CAS  Google Scholar 

  10. [10]

    Zhang, T.; Fu, L. Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem2018, 4, 671–689.

    CAS  Google Scholar 

  11. [11]

    Sutter, P.; Huang, Y.; Sutter, E. Nanoscale integration of two-dimensional materials by lateral heteroepitaxy Nano Lett.2014, 14, 4846–4851.

    CAS  Google Scholar 

  12. [12]

    Liu, M. X.; Li, Y. C.; Chen, P. C.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Gao, T.; Gao, Y.; Cheng, Z. H.; Qiu, X. H. et al. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary. Nano Lett.2014, 14, 6342–6347.

    CAS  Google Scholar 

  13. [13]

    Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett.2012, 12, 4869–4874.

    CAS  Google Scholar 

  14. [14]

    Drost, R.; Kezilebieke, S.; Ervasti, M. M.; Hamalainen, S. K.; Schulz, F.; Harju, A.; Liljeroth, P. Synthesis of extended atomically perfect zigzag graphene-boron nitride interfaces. Sci. Rep.2015. 5, 16741.

    CAS  Google Scholar 

  15. [15]

    Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater.2010, 9, 430–435.

    CAS  Google Scholar 

  16. [16]

    Kim, S. M.; Hsu, A.; Araujo, P. T.; Lee, Y. H.; Palacios, T.; Dresselhaus, M.; Idrobo, J. C.; Kim, K. K.; Kong, J. Synthesis of patched or stacked graphene and hBN flakes: A route to hybrid structure discovery. Nano Lett.2013, 13, 933–941.

    CAS  Google Scholar 

  17. [17]

    Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. J.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. J.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol.2013, 8, 119–124.

    CAS  Google Scholar 

  18. [18]

    Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Natur.2012, 488, 627–632.

    CAS  Google Scholar 

  19. [19]

    Lu, G Y.; Wu, T. R.; Yang, P.; Yang, Y. C.; Jin, Z. H.; Chen, W. B.; Jia, S.; Wang, H. M.; Zhang, G H.; Su, J. L. et al. Synthesis of high-quality graphene and hexagonal boron nitride monolayer in-plane heterostructure on Cu-Ni alloy. Adv. Sci.2017, 4, 1700076.

    Google Scholar 

  20. [20]

    Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. R.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science2014, 343. 163–167.

    CAS  Google Scholar 

  21. [21]

    Gao, T.; Song, X. J.; Du, H. W.; Nie, Y. R.; Chen, Y. B.; Ji, Q. Q.; Sun, J. Y.; Yang, Y. L.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun.2015, 6, 6835.

    CAS  Google Scholar 

  22. [22]

    Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. R.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater.2011, 10, 443–449.

    CAS  Google Scholar 

  23. [23]

    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Natur.2011, 469, 389–392.

    CAS  Google Scholar 

  24. [24]

    Yazyev, O. V.; Louie, S. G Electronic transport in polycrystalline graphene. Nat. Mater.2010, 9, 806–809.

    CAS  Google Scholar 

  25. [25]

    Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Aim, S. J.; Aim, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science2014, 344, 286–289.

    CAS  Google Scholar 

  26. [26]

    Wang, L.; Xu, X. Z.; Zhang, L. N.; Qiao, R. X.; Wu, M. H.; Wang, Z. C.; Zhang, S.; Liang, J.; Zhang, Z. H.; Zhang, Z. B. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Natur.2019, 570, 91–95.

    CAS  Google Scholar 

  27. [27]

    Zhang, Z. Y.; Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science1997, 276, 377–383.

    CAS  Google Scholar 

  28. [28]

    Roder, H.; Bromann, K.; Brune, H.; Kern, K. Diffusion-limited aggregation with active edge diffusion. Phys. Rev. Lett.1995, 74, 3217–3220.

    CAS  Google Scholar 

  29. [29]

    Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev.2011, 84, 155425.

    Google Scholar 

  30. [30]

    Chang, T. C.; Hwang, I. S.; Tsong, T. T. Direct observation of reaction-limited aggregation on semiconductor surfaces. Phys. Rev. Lett.1999, 83, 1191–1194.

    CAS  Google Scholar 

  31. [31]

    Liu, B. G.; Wu, J.; Wang, E. G.; Zhang, Z. Y. Two-dimensional pattern formation in surfactant-mediated epitaxial growth. Phys. Rev. Lett.1999, 83, 1195–1198.

    CAS  Google Scholar 

  32. [32]

    Mok, H. S.; Ebnonnasir, A.; Murata, Y.; Nie, S.; McCarty, K. F.; Ciobanu, C. V.; Kodambaka, S. Kinetics of monolayer graphene growth by segregation on Pd(111). Appl. Phys. Lett.2014, 104, 101606.

    Google Scholar 

  33. [33]

    Mende, P. C.; Gao, Q.; Ismach, A.; Chou, Ft.; Widom, M.; Ruoff, R.; Colombo, L.; Feenstra, R. M. Characterization of hexagonal boron nitride layers on nickel surfaces by low-energy electron microscopy. Surf. Sci.2017, 659, 31–42.

    CAS  Google Scholar 

  34. [34]

    Wang, Z. J.; Weinberg, G.; Zhang, Q.; Lunkenbein, T.; Klein-Hoffmann, A.; Kurnatowska, M.; Plodinec, M.; Li, Q.; Chi, L. R.; Schloegl, R. et al. Direct observation of graphene growth and associated copper substrate dynamics by in sit. scanning electron microscopy. ACS Nano2015, 9, 1506–1519.

    CAS  Google Scholar 

  35. [35]

    Suzuki, S.; Pallares, R. M.; Hibino, H. Growth of atomically thin hexagonal boron nitride films by diffusion through a metal film and precipitation. J. Phys. D Appl. Phys.2012, 45, 385304.

    Google Scholar 

  36. [36]

    Wei, W.; Lin, L.; Zhang, G H.; Ye, X. Q.; Bin, R.; Meng, C. X.; Ning, Y. X.; Fu, Q.; Bao, X. H. Effect of near-surface dopants on the epitaxial growth of h-BN on metal surfaces. Adv. Mater. Interface.2019, 6, 1801906.

    Google Scholar 

  37. [37]

    Yang, Y.; Fu, Q.; Wei, M. M.; Bluhm, H.; Bao, X. H. Stability of BN/metal interfaces in gaseous atmosphere. Nano Res.2015, 8, 227–237.

    CAS  Google Scholar 

  38. [38]

    Wu, B.; Geng, D. C.; Xu, Z. P.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Self-organized graphene crystal patterns. NPG Asia Mater.2013, 5, e36.

    CAS  Google Scholar 

  39. [39]

    Wang, E. G. Atomic-scale study of kinetics in film growth (I). Prog. Phys.2003, 23, 1–61.

    Google Scholar 

  40. [40]

    Zhang, Z. Y.; Chen, X.; Lagally, M. G Bonding-geometry dependence of fractal growth on metal surfaces. Phys. Rev. Lett.1994, 73, 1829–1832.

    Google Scholar 

  41. [41]

    Murata, Y.; Starodub, E.; Kappes, B. B.; Ciobanu, C. V.; Bartelt, N. C.; McCarty, K. F.; Kodambaka, S. Orientation-dependent work function of graphene on Pd(111). Appl. Phys. Lett.2010, 97, 143114.

    Google Scholar 

  42. [42]

    Wei, W.; Meng, J.; Meng, C. X.; Ning, Y. X.; Li, Q. X.; Fu, Q.; Bao, X. H. Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species. Appl. Phys. Lett.2018, 112, 171601.

    Google Scholar 

  43. [43]

    Laskowski, R.; Blaha, P.; Schwarz, K. Bonding of hexagonal BN to transition metal surfaces: An ab initi. density-functional theory study. Phys. Rev.2004, 78, 045409.

    Google Scholar 

  44. [44]

    Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev.2009, 79, 195425.

    Google Scholar 

  45. [45]

    Wang, L. R.; Wu, B.; Jiang, L. L.; Chen, J. S.; Li, Y. T.; Guo, W.; Hu, P. A.; Liu, Y. Growth and etching of monolayer hexagonal boron nitride. Adv. Mater.2015, 27, 4858–4864.

    CAS  Google Scholar 

  46. [46]

    Nie, S.; Bartelt, N. C.; Wofford, J. M.; Dubon, O. D.; McCarty, K. R.; Thtirmer, K. Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions. Phys. Rev. B2012, 85, 205406.

    Google Scholar 

  47. [47]

    Kiraly, B.; Iski, E. V.; Mannix, A. J.; Fisher, B. L.; Hersam, M. C.; Guisinger, N. P. Solid-source growth and atomic-scale characterization of graphene on Ag(lll). Nat. Commun.2013, 4, 2804.

    Google Scholar 

  48. [48]

    Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys.2008, 10, 093026.

    Google Scholar 

  49. [49]

    Dong, G C.; Fourré, E. B.; Tabak, F. C.; Frenken, J. W. M. How boron nitride forms a regular nanomesh on Rh( 111). Phys. Rev. Lett.2012, 104, 096102.

    Google Scholar 

  50. [50]

    Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep.2012, 67, 83–115.

    CAS  Google Scholar 

  51. [51]

    Wu, P.; Jiang, H. J.; Zhang, W. H.; Li, Z. Y.; Hou, Z. H.; Yang, J. L. Lattice mismatch induced nonlinear growth of graphene. J. Am. Chem. Soc.2013, 134, 6045–6051.

    Google Scholar 

  52. [52]

    Pacile, D.; Leicht, P.; Papagno, M.; Sheverdyaeva, P. M.; Moras, P.; Carbone, C.; Krausert, K.; Zielke, L.; Fonin, M.; Dedkov, Y. S. et al. Artificially lattice-mismatched graphene/metal interface: Graphene/ Ni/Ir(111). Phys. Rev.2013, 87, 035420.

    Google Scholar 

  53. [53]

    Patera, L. L.; Africh, C.; Weatherup, R. S.; Blume, R.; Bhardwaj, S.; Castellarin-Cudia, C.; Knop-Gericke, A.; Schloegl, R.; Comelli, G.; Hofmann, S. et al. In sit. observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth. ACS Nan.2013, 7, 7901–7912.

    CAS  Google Scholar 

  54. [54]

    Dahal, A.; Addou, R.; Sutter, P.; Batzill, M. Graphene monolayer rotation on Ni(111) facilitates bilayer graphene growth. Appl. Phys. Lett.2012, 100, 241602.

    Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 21872169), Natural Science Foundation of Jiangsu Province (No. BK20170426). The authors are grateful for the support for Synchrotron Light Research Institute (SLRI) in Thailand, and the help from Ms. Xiao Chen and Mr. Hu Wang with current magnetron sputtering experiments in Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, CAS.

Author information



Corresponding authors

Correspondence to Yi Cui or Xinhe Bao.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Pan, J., Euaruksakul, C. et al. Dynamic observation of in-plane h-BN/graphene heterostructures growth on Ni(111). Nano Res. 13, 1789–1794 (2020).

Download citation


  • hexagonal boron nitride (h-BN)
  • graphene
  • in-plane heterostructures
  • growth dynamics