Abstract
Graphite as a positive electrode material of dual ion batteries (DIBs) has attracted tremendous attentions for its advantages including low lost, high working voltage and high energy density. However, very few literatures regarding to the real-time observation of anion intercalation behavior and surface evolution of graphite in DIBs have been reported. Herein, we use in situ atomic force microscope (AFM) to directly observe the intercalation/de-intercalation processes of PF6− in graphite in real time. First, by measuring the change in the distance between graphene layers during intercalation, we found that PF6− intercalates in one of every three graphite layers and the intercalation speed is measured to be 2 µm·min−1. Second, graphite will wrinkle and suffer structural damages at high voltages, along with severe electrolyte decomposition on the surface. These findings provide useful information for further optimizing the capacity and the stability of graphite anode in DIBs.

This is a preview of subscription content, access via your institution.
References
Wang, M.; Tang, Y. B. A review on the features and progress of dual-ion batteries. Adv. Energy Mater.2018, 8, 1703320.
Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev.2018, 1, 35–53.
Zhou, Z. L.; Li, N.; Yang, Y. Z.; Chen, H. S.; Jiao, S. Q.; Song, W. L.; Fang, D. N. Ultra-lightweight 3D carbon current collectors: Constructing all-carbon electrodes for stable and high energy density dual-ion batteries. Adv. Energy Mater.2018, 8, 1801439.
Placke, T.; Heckmann, A.; Schmuch, R.; Meister, P.; Beltrop, K.; Winter, M. Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule2018, 2, 2528–2550.
Gao, J. C.; Tian, S. F.; Qi, L.; Wang, H. Y. Intercalation manners of perchlorate anion into graphite electrode from organic solutions. Electrochim. Acta2015, 176, 22–27.
Kravchyk, K. V.; Bhauriyal, P.; Piveteau, L.; Guntlin, C. P.; Pathak, B.; Kovalenko, M. V. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun.2018, 9, 4469.
Qi, X.; Blizanac, B.; DuPasquier, A.; Meister, P.; Placke, T.; Oljaca, M.; Li, J.; Winter, M. Investigation of PF6− and TFSI− anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys. Chem. Chem. Phys.2014, 16, 25306–25313.
Wang, S.; Jiao, S. Q.; Tian, D. H.; Chen, H. S.; Jiao, H. D.; Tu, J. G.; Liu, Y. J.; Fang, D. N. A novel ultrafast rechargeable multi-ions battery. Adv. Mater.2017, 29, 1606349.
Jiao, S. Q.; Lei, H. P.; Tu, J. G.; Zhu, J.; Wang, J. X.; Mao, X. H. An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon2016, 109, 276–281.
Sun, H. B.; Wang, W.; Yu, Z. J.; Yuan, Y.; Wang, S.; Jiao, S. Q. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun.2015, 51, 11892–11895.
Yu, Z. J.; Jiao, S. Q.; Li, S. J.; Chen, X. D.; Song, W. L.; Teng, T.; Tu, J. G.; Chen, H. S.; Zhang, G. H.; Fang, D. N. Flexible stable solid-state Al-ion batteries. Adv. Funct. Mater.2019, 29, 1806799.
Zhang, X. F.; Jiao, S. Q.; Tu, J. G.; Song, W. L.; Xiao, X.; Li, S. J.; Wang, M. Y.; Lei, H. P.; Tian, D. H.; Chen, H. S. et al. Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci.2019, 12, 1918–1927.
Placke, T.; Schmuelling, G.; Kloepsch, R.; Meister, P.; Fromm, O.; Hilbig, P.; Meyer, H. W.; Winter, M. In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications. Z. Anorg. Allg. Chem.2014, 640, 1996–2006.
Schmuelling, G.; Placke, T.; Kloepsch, R.; Fromm, O.; Meyer, H. W.; Passerini, S.; Winter, M. X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells. J. Power Sources2013, 239, 563–571.
Gao, J. C.; Yoshio, M.; Qi, L.; Wang, H. Y. Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources2015, 278, 452–457.
Li, N.; Xin, Y. D.; Chen, H. S.; Jiao, S. Q.; Jiang, H. Q.; Song, W. L.; Fang, D. N. Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation. J. Energy Chem.2019, 29, 122–128.
Cresce, A. V.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K. In situ and quantitative characterization of solid electrolyte interphases. Nano Lett.2014, 14, 1405–1412.
Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol.2019, 14, 50–56.
Lacey, S. D.; Wan, J. Y.; von Wald Cresce, A.; Russell, S. M.; Dai, J. Q.; Bao, W. Z.; Xu, K.; Hu, L. B. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett.2015, 15, 1018–1024.
Liu, C.; Ye, S. In situ Atomic Force Microscopy (AFM) study of oxygen reduction reaction on a gold electrode surface in a dimethyl sulfoxide (DMSO)-based electrolyte solution. J. Phys. Chem. C2016, 120, 25246–25255.
Liu, X. R.; Wang, L.; Wan, L. J.; Wang, D. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. ACS Appl. Mater. Interfaces2015, 7, 9573–9580.
Alliata, D.; Häring, P.; Haas, O.; Kötz, R.; Siegenthaler, H. Anion intercalation into highly oriented pyrolytic graphite studied by electrochemical atomic force microscopy. Electrochem. Commun.1999, 1, 5–9.
Alliata, D.; Kötz, R.; Haas, O.; Siegenthaler, H. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte. Langmuir1999, 15, 8483–8489.
Goss, C. A.; Brumfield, J. C.; Irene, E. A.; Murray, R. W. Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal. Chem.1993, 65, 1378–1389.
Noel, M.; Santhanam, R. Electrochemistry of graphite intercalation compounds. J. Power Sources1998, 72, 53–65.
Ishihara, T.; Yokoyama, Y.; Kozono, F.; Hayashi, H. Intercalation of PF6− anion into graphitic carbon with nano pore for dual carbon cell with high capacity. J. Power Sources2011, 196, 6956–6959.
Seel, J. A.; Dahn, J. R. Electrochemical intercalation of PF6− into graphite. J. Electrochem. Soc.2000, 147, 892–898.
Eshetu, G. G.; Diemant, T.; Grugeon, S.; Behm, R. J.; Laruelle, S.; Armand, M.; Passerini, S. In-depth interfacial chemistry and reactivity focused investigation of lithium-imide-and lithium-imidazole-based electrolytes. ACS Appl. Mater. Interfaces2016, 8, 16087–16100.
Märkle, W.; Tran, N.; Goers, D.; Spahr, M. E.; Novák, P. The influence of electrolyte and graphite type on the PF6− intercalation behaviour at high potentials. Carbon2009, 47, 2727–2732.
Choo, H. S.; Kinumoto, T.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J. Electrochem. Soc.2007, 154, B1017–B1023.
Acknowledgements
This research was financially supported by Soft Science Research Project of Guangdong Province (No. 2017B030301013) and the Shenzhen Science and Technology Research (Nos. JCYJ20170818085823773 and ZDSYS201707281026184).
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Yang, K., Jia, L., Liu, X. et al. Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM. Nano Res. 13, 412–418 (2020). https://doi.org/10.1007/s12274-020-2623-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-020-2623-1
Keywords
- dual ion battery
- in situ atomic force microscope (AFM)
- graphite positive electrode
- hierarchical anion intercalation
- structure evolution
- surface reaction