Boride-based electrocatalysts: Emerging candidates for water splitting

Abstract

Electrocatalytic water splitting (EWS) is a promising route to produce hydrogen in a sustainable and environment-benign manner. To realize the large-scale hydrogen production, it is paramount to develop desirable electrocatalysts with engineered structure, high catalytic activity, facile accessibility, low cost, and good durability. Of late, boride-based materials, especially transition-metal borides (TMBs), are emerging as promising candidates for the EWS process. However, so far, little attempt has been made to provide a comprehensive summary on these findings. Herein, this review provides the up-to-date status on upgrading the catalytic performance of TMB-based nanomaterials by regulating the internal and external characteristics. The conventional synthetic techniques are first presented for the preparation of TMB-based catalysts. Afterwards, the advanced strategies are summarized to enhance the catalytic performance of TMBs, including morphology control, component regulation, phase engineering, surface oxidation and hybridization. Then, the design principles of TMB-based electrocatalysts for high-performance EWS are outlined. Lastly, the current challenges and future directions in the development of TMB-based materials are proposed. This review article is expected to envisage insights into the TMBs-based water splitting and to provide strategies for design of the next-generation TMB-based electrocatalysts.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Wang, Y. H.; Chen, L.; Yu, X. M.; Wang, Y. G.; Zheng, G. F. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Adv. Energy Mater.2017, 7, 1601390.

    Google Scholar 

  2. [2]

    Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A2019, 7, 14971–15005.

    CAS  Google Scholar 

  3. [3]

    Huang, X. L.; Leng, M.; Xiao, W.; Li, M.; Ding, J.; Tan, T. L.; Lee, W. S. V.; Xue, J. M. Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater.2017, 27, 1604943.

    Google Scholar 

  4. [4]

    Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small2018, 14, 1703323.

    Google Scholar 

  5. [5]

    Xin, W. L.; Jiang, W. J.; Lian, Y. J.; Li, H.; Hong, S.; Xu, S. L.; Yan, H.; Hu, J. S. NiS2 nanodotted carnation-like CoS2 for enhanced electrocatalytic water splitting. Chem. Commun.2019, 55, 3781–3784.

    CAS  Google Scholar 

  6. [6]

    Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Chen, Z. G.; Zhou, W.; Komarek, A. C.; Lin, Q.; Lin, H. J.; Chen, C. T.; Zhong, Y. J. et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater., in press, DOI: 10.1002/adma.201905025.

    Google Scholar 

  7. [7]

    Sun, H. N.; Xu, X. M.; Chen, G.; Zhou, Y. P.; Lin, H. J.; Chen, C. T.; Ran, R.; Zhou, W.; Shao, Z. P. Smart control of composition for double perovskite electrocatalysts toward enhanced oxygen evolution reaction. ChemSusChem2019, 12, 5111–5116.

    CAS  Google Scholar 

  8. [8]

    Lu, Q.; Yu, J.; Zou, X.; Liao, K.; Tan, P.; Zhou, W.; Ni, M.; Shao, Z. Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater.2019, 29, 1904481.

    Google Scholar 

  9. [9]

    Guo, M. C.; Zhou, L. X.; Li, Y.; Zheng, Q. J.; Xie, F. Y.; Lin, D. M. Unique nanosheet–nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a high-efficiency oxygen evolution reaction. J. Mater. Chem. A2019, 7, 13130–13141.

    CAS  Google Scholar 

  10. [10]

    Guo, R. H.; Lai, X. X.; Huang, J. W.; Du, X. C.; Yan, Y. C.; Sun, Y. H.; Zou, G. F.; Xiong, J. Phosphate-based electrocatalysts for water splitting: Recent progress. ChemElectroChem2018, 5, 3822–3834.

    CAS  Google Scholar 

  11. [11]

    Xiong, B. Y.; Chen, L. S.; Shi, J. L. Anion-containing noble-metalfree bifunctional electrocatalysts for overall water splitting. ACS Catal. 2018, 8, 3688–3707.

    CAS  Google Scholar 

  12. [12]

    Wang, H. F.; Tang, C.; Li, B. Q.; Zhang, Q. A review of anionregulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorg. Chem. Front. 2018, 5, 521–534.

    Google Scholar 

  13. [13]

    Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater.2019, 31, 1806682.

    Google Scholar 

  14. [14]

    Pei, Y.; Cheng, Y.; Chen, J. Y.; Smith, W.; Dong, P.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A2018, 6, 23220–23243.

    CAS  Google Scholar 

  15. [15]

    Wang, Y.; Kong, B.; Zhao, D. Y.; Wang, H. T; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today2017, 15, 26–55.

    CAS  Google Scholar 

  16. [16]

    Shi, Y. M.; Zhang, B. Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Trans.2017, 46, 16770–16773.

    CAS  Google Scholar 

  17. [17]

    Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

    CAS  Google Scholar 

  18. [18]

    Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev.2016, 45, 1529–1541.

    CAS  Google Scholar 

  19. [19]

    Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H. L.; Moshfegh, A. Z. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives. Nanoscale Horiz. 2018, 3, 90–204.

    CAS  Google Scholar 

  20. [20]

    Liu, Y. C.; Li, Y.; Kang, H. Y.; Jin, T.; Jiao, L. F. Design, synthesis, and energy-related applications of metal sulfides. Mater. Horiz. 2016, 3, 402–421.

    CAS  Google Scholar 

  21. [21]

    Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev.2019, 48, 4178–4280.

    CAS  Google Scholar 

  22. [22]

    Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc.2018, 140, 7748–7759.

    CAS  Google Scholar 

  23. [23]

    Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater.2018, 8, 1702774.

    Google Scholar 

  24. [24]

    Yan, S. H.; Abhilash, K. P.; Tang, L. Y.; Yang, M.; Ma, Y. F.; Xia, Q. Y.; Guo, Q. B.; Xia, H. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small2019, 15, 1804371.

  25. [25]

    Xu, X. M.; Zhong, Y. J.; Shao, Z. P. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem.2019, 1, 410–424.

    Google Scholar 

  26. [26]

    Liu, Y.; Wang, W.; Xu, X. M.; Veder, J. P. M.; Shao, Z. P. Recent advances in anion-doped metal oxides for catalytic applications. J. Mater. Chem. A2019, 7, 7280–7300.

    CAS  Google Scholar 

  27. [27]

    Xu, X. M.; Wang, W.; Zhou, W.; Shao, Z. P. Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods2018, 2, 1800071.

    Google Scholar 

  28. [28]

    Zhu, Y. L.; Zhou, W.; Shao, Z. P. Perovskite/carbon composites: Applications in oxygen electrocatalysis. Small2017, 13, 1603793.

    Google Scholar 

  29. [29]

    Xie, W. F., Li, Z. H.; Shao, M. F., Wei, M. Layered double hydroxidebased core-shell nanoarrays for efficient electrochemical water splitting. Front. Chem. Sci. Eng. 2018, 12, 537–554.

    CAS  Google Scholar 

  30. [30]

    Wang, Y. Y.; Yan, D. F.; El Hankari, S.; Zou, Y. Q.; Wang, S. Y. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. (Weinh)2018, 5, 1800064.

    Google Scholar 

  31. [31]

    Gottlieb, E.; Matyjaszewski, K.; Kowalewski, T. Polymer-based synthetic routes to carbon-based metal-free catalysts. Adv. Mater.2018, 31, 1804626.

    Google Scholar 

  32. [32]

    Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater.2017, 2, 16098.

  33. [33]

    Tackett, B. M.; Sheng, W. C.; Chen, J. G. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule2017, 1, 253–263.

    CAS  Google Scholar 

  34. [34]

    Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun.2013, 49, 8896–8909.

    CAS  Google Scholar 

  35. [35]

    Gupta, S.; Patel, N., Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B: Environ.2016, 192, 126–133.

    CAS  Google Scholar 

  36. [36]

    Masa, J.; Andronescu, C.; Antoni, H.; Sinev, I.; Seisel, S.; Elumeeva, K.; Barwe, S.; Marti-Sanchez, S.; Arbiol, J.; Roldan Cuenya, B. et al. Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides. ChemElectroChem2019, 6, 235–240.

    CAS  Google Scholar 

  37. [37]

    Masa, J.; Piontek, S.; Wilde, P.; Antoni, H.; Eckhard, T.; Chen, Y. T.; Muhler, M.; Apfel, U. P.; Schuhmann, W. Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts. Adv. Energy Mater.2019, 9, 1900796.

    Google Scholar 

  38. [38]

    Li, J. H.; Chen, H.; Liu, Y. P.; Gao, R. Q.; Zou, X. X. In situ structural evolution of a nickel boride catalyst: Synergistic geometric and electronic optimization for the oxygen evolution reaction. J. Mater. Chem. A2019, 7, 5288–5294.

    CAS  Google Scholar 

  39. [39]

    Yuan, W. Y.; Zhao, X. S.; Hao, W. J.; Li, J. X.; Wang, L. C., Ma, X. H.; Guo, Y. H. Performance of surface-oxidized Ni3B, Ni2B, and NiB2 electrocatalysts for overall water splitting. ChemElectroChem2019, 6, 764–770.

    CAS  Google Scholar 

  40. [40]

    Jiang, W. J.; Niu, S.; Tang, T.; Zhang, Q. H.; Liu, X. Z.; Zhang, Y.; Chen, Y. Y.; Li, J. H.; Gu, L.; Wan, L. J. et al. Crystallinity-modulated electrocatalytic activity of a nickel(II) borate thin layer on Ni3B for efficient water oxidation. Angew. Chem., Int. Ed.2017, 56, 6572–6577.

    CAS  Google Scholar 

  41. [41]

    Li, P. P.; Zhao, R. B.; Chen, H. Y.; Wang, H. B.; Wei, P. P.; Huang, H.; Liu, Q.; Li, T. S.; Shi, X. F.; Zhang, Y. Y. et al. Recent advances in the development of water oxidation electrocatalysts at mild pH. Small2019, 15, 1805103.

    Google Scholar 

  42. [42]

    Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy2019, 58, 244–276.

    CAS  Google Scholar 

  43. [43]

    Zhang, T. R.; Zhu, Y. S.; Lee, J. Y. Unconventional noble metal-free catalysts for oxygen evolution in aqueous systems. J. Mater. Chem. A2018, 6, 8147–8158.

    CAS  Google Scholar 

  44. [44]

    Dinh, K. N.; Liang, Q. H.; Du, C. F.; Zhao, J.; Tok, A. I. Y.; Mao, H.; Yan, Q. Y. Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today2019, 25, 99–121.

    CAS  Google Scholar 

  45. [45]

    Chattopadhyay, J.; Srivastava, R}. Advanced Nanomaterials in Biomedical, Sensor and Energy Applications; Springer: Berlin, 2017.

    Google Scholar 

  46. [46]

    Carenco, S.; Portehault, D.; Boissiere, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev.2013, 113, 7981–8065.

    CAS  Google Scholar 

  47. [47]

    Jo, S.; Kwon, J. H.; Cho, K. Y.; Kim, D. H.; Eom, K. S. Enhanced activity and stability of Co-Ni-P-B catalyst for the hydrogen evolution reaction via predeposition of Co-Ni on a Cu substrate. Catal. Today, in press, DOI: 10.1016/j.cattod.2019.07.001.

  48. [48]

    Park, H.; Zhang, Y. M.; Lee, E.; Shankhari, P.; Fokwa, B. T. P. High-current-density HER electrocatalysts: Graphene-like boron layer and tungsten as key ingredients in metal diborides. ChemSusChem2019, 12, 3726–3731.

    CAS  Google Scholar 

  49. [49]

    Guo, F. F.; Wu, Y. Y.; Ai, X.; Chen, H.; Li, G. D.; Chen, W.; Zou, X. X. A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem. Commun.2019, 55, 8627–8630.

    CAS  Google Scholar 

  50. [50]

    Xu, X. S.; Deng, Y. X.; Gu, M. H.; Sun, B. T.; Liang, Z. Q.; Xue, Y. J.; Guo, Y. C.; Tian, J.; Cui, H. Z. Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst. Appl. Surf. Sci.2019, 470, 591–595.

    CAS  Google Scholar 

  51. [51]

    Wu, Y. H.; Gao, Y.; He, H. W.; Zhang, P. Novel electrocatalyst of nickel sulfide boron coating for hydrogen evolution reaction in alkaline solution. Appl. Surf. Sci.2019, 480, 689–696.

    CAS  Google Scholar 

  52. [52]

    Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. Q. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew. Chem., Int. Ed.2018, 57, 496–500.

    CAS  Google Scholar 

  53. [53]

    Sun, Z. M.; Hao, S.; Ji, X. Q.; Zheng, X. J.; Xie, J. F.; Li, X. M.; Tang, B. Efficient alkaline hydrogen evolution electrocatalysis enabled by an amorphous Co-Mo-B film. Dalton Trans.2018, 47, 7640–7643.

    CAS  Google Scholar 

  54. [54]

    Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater.2018, 9, 1803369.

    Google Scholar 

  55. [55]

    Sheng, M. Q.; Wu, Q.; Wang, Y.; Liao, F.; Zhou, Q. Y.; Hou, J. X.; Weng, W. P. Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution. Electrochem. Commun.2018, 93, 104–108.

    CAS  Google Scholar 

  56. [56]

    Kim, J.; Kim, H.; Kim, S. K.; Ahn, S. H. Electrodeposited amorphous Co-P-B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A2018, 6, 6282–6288.

    CAS  Google Scholar 

  57. [57]

    Wang, Y.; Mayorga- Martinez, C. C.; Chia, X.; Sofer, Z.; Mohamad Latiff, N.; Pumera, M. Bipolar electrochemistry as a simple synthetic route toward nanoscale transition of Mo2B5 and W2B5 for enhanced hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 12148–12159.

    CAS  Google Scholar 

  58. [58]

    Jothi, P. R.; Zhang, Y.; Yubuta, K.; Culver, D. B.; Conley, M.; Fokwa, B. P. T. Abundant vanadium diboride with graphene-like boron layers for hydrogen evolution. ACS Appl. Energy Mater.2019, 2, 176–181.

    CAS  Google Scholar 

  59. [59]

    Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A2018, 6, 22062–22069.

    CAS  Google Scholar 

  60. [60]

    Cao, M.; Zhang, X. Y.; Qin, J. Q.; Liu, R. P. Enhancement of hydrogen evolution reaction performance of graphitic carbon nitride with incorporated nickel boride. ACS Sustainable Chem. Eng. 2018, 6, 16198–16204.

    CAS  Google Scholar 

  61. [61]

    Wang, X. F.; Tai, G. A.; Wu, Z. H.; Hu, T. S.; Wang, R. Ultrathin molybdenum boride films for highly efficient catalysis of the hydrogen evolution reaction. J. Mater. Chem. A2017, 5, 23471–23475.

    CAS  Google Scholar 

  62. [62]

    Park, H.; Encinas, A.; Scheifers, J. P.; Zhang, Y. M.; Fokwa, B. P. T. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed.2017, 56, 5575–5578.

    CAS  Google Scholar 

  63. [63]

    Jothi, P. R.; Zhang, Y. M.; Scheifers, J. P.; Park, H.; Fokwa, B. P. T. Molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction. Sustainable Energy Fuels2017, 1, 1928–1934.

    CAS  Google Scholar 

  64. [64]

    Alameda, L. T.; Holder, C. F.; Fenton, J. L.; Schaak, R. E. Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem. Mater.2017, 29, 8953–8957.

    CAS  Google Scholar 

  65. [65]

    Sitler, S. J.; Raja, K. S.; Charit, I. Metal-rich transition metal diborides as electrocatalysts for hydrogen evolution reactions in a wide range of pH. J. Electrochem. Soc.2016, 163, H1069–H1075.

    CAS  Google Scholar 

  66. [66]

    Zhang, P. L.; Wang, M.; Yang, Y.; Yao, T. Y.; Han, H. X.; Sun, L. C. Electroless plated Ni-Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy2016, 19, 98–107.

    CAS  Google Scholar 

  67. [67]

    Gupta, S.; Patel, N.; Miotello, A.; Kothari, D. C. Cobalt-boride: An efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources2015, 279, 620–625.

    CAS  Google Scholar 

  68. [68]

    Müller, C. I.; Rauscher, T.; Schmidt, A.; Schubert, T.; Weißgärber, T.; Kieback, B.; Röntzsch, L. Electrochemical investigations on amorphous Fe-base alloys for alkaline water electrolysis. Int. J. Hydrogen Energy2014, 39, 8926–8937.

    Google Scholar 

  69. [69]

    Yuan, H. F.; Wang, S. M.; Gu, X. D.; Tang, B.; Li, J. P.; Wang, X. G. One-step solid-phase boronation to fabricate self-supported porous FeNiB/FeNi foam for efficient electrocatalytic oxygen evolution and overall water splitting. J. Mater. Chem. A2019, 7, 19554–19564.

    CAS  Google Scholar 

  70. [70]

    Wang, S.; He, P.; Xie, Z. W.; Jia, L. P.; He, M. Q.; Zhang, X. Q.; Dong, F. Q.; Liu, H. H.; Zhang, Y.; Li, C. X. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction. Electrochim. Acta2019, 296, 644–652.

    CAS  Google Scholar 

  71. [71]

    Jiang, Y. Y.; Fang, Y. T.; Chen, C. X.; Ni, P. J.; Kong, B.; Song, Z. Q.; Lu, Y. Z.; Niu, L. Amorphous cobalt boride nanosheets directly grown on nickel foam: Controllable alternately dipping deposition for efficient oxygen evolution. ChemElectroChem2019, 6, 3684–3689.

    CAS  Google Scholar 

  72. [72]

    Wang, L. C.; Li, J. X.; Zhao, X. S.; Hao, W. J.; Ma, X. H.; Li, S. J.; Guo, Y. H. Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction. Adv. Mater. Interfaces2019, 6. 1801690.

    Google Scholar 

  73. [73]

    Sun, J. K.; Zhang, W.; Wang, S. Y.; Ren, Y. B.; Liu, Q. Y.; Sun, Y. F.; Tang, L.; Guo, J. X.; Zhang, X. Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution. J. Alloys Compd. 2019, 776, 511–518.

    CAS  Google Scholar 

  74. [74]

    Mann, D. K.; Xu, J. Y.; Mordvinova, N. E.; Yannello, V.; Ziouani, Y.; González-Ballesteros, N.; Sousa, J. P. S.; Lebedev, O. I.; Kolen’ko, Y. V.; Shatruk, M. Electrocatalytic water oxidation over AlFe2B2. Chem. Sci.2019, 10, 2796–2804.

    CAS  Google Scholar 

  75. [75]

    Han, H. S.; Hong, Y. R.; Woo, J.; Mhin, S.; Kim, K. M.; Kwon, J.; Choi, H.; Chung, Y. C.; Song, T. Electronically double-layered metal boride hollow nanoprism as an excellent and robust water oxidation electrocatalysts. Adv. Energy Mater.2019, 9, 1803799.

    Google Scholar 

  76. [76]

    Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci.2019, 12, 684–692.

    CAS  Google Scholar 

  77. [77]

    Zhang, J.; Li, X. X.; Liu, Y. T.; Zeng, Z. W.; Cheng, X.; Wang, Y. D.; Tu, W. M.; Pan, M. Bi-metallic boride electrocatalysts with enhanced activity for the oxygen evolution reaction. Nanoscale2018, 10, 11997–12002.

    CAS  Google Scholar 

  78. [78]

    Xue, C. L.; Li, G. S.; Wang, J. H.; Wang, Y.; Li, L. P. Fe3+ doped amorphous Co2BOy(OH)z with enhanced activity for oxygen evolution reaction. Electrochim. Acta2018, 280, 1–8.

    CAS  Google Scholar 

  79. [79]

    Nsanzimana, J. M. V.; Reddu, V.; Peng, Y.; Huang, Z. F.; Wang, C.; Wang, X. Ultrathin amorphous iron-nickel boride nanosheets for highly efficient electrocatalytic oxygen production. Chemistry2018, 24, 18502–18511.

    CAS  Google Scholar 

  80. [80]

    Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater.2018, 8, 1701475.

    Google Scholar 

  81. [81]

    Nsanzimana, J. M. V.; Dangol, R.; Reddu, V.; Dou, S.; Peng, Y. C.; Dinh, K. N.; Huang, Z. F.; Yan, Q. Y.; Wang, X. Facile synthesis of amorphous ternary metal borides-reduced graphene oxide hybrid with superior oxygen evolution activity. ACS Appl. Mater. Interfaces2018, 11, 846–855.

    Google Scholar 

  82. [82]

    Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Wang, M. H.; Li, N.; Li, J. P. Amorphous CoFeBO nanoparticles as highly active electrocatalysts for efficient water oxidation reaction. Int. J. Hydrogen Energy2018, 43, 6138–6149.

    CAS  Google Scholar 

  83. [83]

    Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res.2018, 11, 1664–1675.

    CAS  Google Scholar 

  84. [84]

    Liang, X. G.; Dong, R. T.; Li, D. P.; Bu, X. M.; Li, F. Z.; Shu, L.; Wei, R. J.; Ho, J. C. Coupling of nickel boride and Ni(OH)2 nanosheets with hierarchical interconnected conductive porous structure synergizes the oxygen evolution reaction. ChemCatChem2018, 10, 4555–4561.

    CAS  Google Scholar 

  85. [85]

    Li, Y. Q.; Xu, H. B.; Huang, H. Y.; Gao, L. G.; Zhao, Y. Y.; Ma, T. L. Synthesis of Co-B in porous carbon using a metal-organic framework (MOF) precursor: A highly efficient catalyst for the oxygen evolution reaction. Electrochem. Commun.2018, 86, 140–144.

    CAS  Google Scholar 

  86. [86]

    Klemenz, S.; Schuch, J.; Hawel, S.; Zieschang, A. M.; Kaiser, B.; Jaegermann, W.; Albert, B. Synthesis of a highly efficient oxygenevolution electrocatalyst by incorporation of iron into nanoscale cobalt borides. ChemSusChem2018, 11, 3150–3156.

    CAS  Google Scholar 

  87. [87]

    Chen, S. R.; Li, Y. Q.; Zhang, Z. H.; Fu, Q.; Bao, X. H. The synergetic effect of h-BN shells and subsurface B in CoBx@h-BN nanocatalysts for enhanced oxygen evolution reactions. J. Mater. Chem. A2018, 6, 10644–10648.

    CAS  Google Scholar 

  88. [88]

    Arivu, M.; Masud, J.; Umapathi, S.; Nath, M. Facile synthesis of Ni3B/rGO nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction in alkaline media. Electrochem. Commun.2018, 86, 121–125.

    CAS  Google Scholar 

  89. [89]

    An, L. H.; Sun, Y. F.; Zong, Y. X.; Liu, Q. Y.; Guo, J. X.; Zhang, X. Nickel iron boride nanosheets on rGO for active electrochemical water oxidation. J. Solid State Chem.2018, 265, 135–139.

    CAS  Google Scholar 

  90. [90]

    Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; e la Mata, M.; Arbiol, J.; Muhler, M.; Roldan Cuenya, B.; Schuhmann, W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater.2017, 7, 1700381.

    Google Scholar 

  91. [91]

    Jiang, J.; Wang, M.; Yan, W. S.; Liu, X. F.; Liu, J. X.; Yang, J. L.; Sun, L. C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy2017, 38, 175–184.

    CAS  Google Scholar 

  92. [92]

    Elumeeva, K.; Masa, J.; Medina, D.; Ventosa, E.; Seisel, S.; Kayran, Y. U.; Genç, A.; Bobrowski, T.; Weide, P.; Arbiol, J. et al. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. J. Mater. Chem. A2017, 5, 21122–21129.

    CAS  Google Scholar 

  93. [93]

    Chen, H. Y.; Ouyang, S. X.; Zhao, M.; Li, Y. X.; Ye, J. H. Synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces2017, 9, 40333–40343.

    CAS  Google Scholar 

  94. [94]

    Wu, Z. X.; Nie, D. Z.; Song, M.; Jiao, T. T.; Fu, G. T.; Liu, X. E. Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale2019, 11, 7506–7512.

    CAS  Google Scholar 

  95. [95]

    Li, Y. J.; Huang, B. L.; Sun, Y. J.; Luo, M. C.; Yang, Y.; Qin, Y. N.; Wang, L.; Li, C. J.; Lv, F.; Zhang, W. Y. et al. Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small2019, 15, 1804212.

    Google Scholar 

  96. [96]

    Hao, W. J.; Wu, R. B.; Yang, H. Y.; Guo, Y. H. Photothermal coupling electrolysis on Ni-W-B toward practical overall water splitting. J. Mater. Chem. A2019, 7, 12440–12445.

    CAS  Google Scholar 

  97. [97]

    Chen, X. C.; Yu, Z. X.; Wei, L.; Zhou, Z.; Zhai, S. L.; Chen, J. S.; Wang, Y. Q.; Huang, Q. W.; Karahan, H. E.; Liao, X. Z. et al. Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A2019, 7, 764–774.

    CAS  Google Scholar 

  98. [98]

    Chen, Z. J.; Kang, Q.; Cao, G. X.; Xu, N.; Dai, H. B.; Wang, P. Study of cobalt boride-derived electrocatalysts for overall water splitting. Int. J. Hydrogen Energy2018, 43, 6076–6087.

    CAS  Google Scholar 

  99. [99]

    Liu, X. X.; Wang, Y. H.; Chen, L. B.; Chen, P. P.; Jia, S. P.; Zhang, Y.; Zhou, S. Y.; Zang, J. B. Co2B and Co nanoparticles immobilized on the N-B-doped carbon derived from nano-B4C for efficient catalysis of oxygen evolution, hydrogen evolution, and oxygen reduction reactions. ACS Appl. Mater. Interfaces2018, 10, 37067–37078.

    CAS  Google Scholar 

  100. [100]

    He, T.; Nsanzimana, J. M. V.; Qi, J. R.; Zhang, J. Y.; Miao, M.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. Synthesis of amorphous boride nanosheets by the chemical reduction of Prussian blue analogs for efficient water electrolysis. J. Mater. Chem. A2018, 6, 23289–23294.

    CAS  Google Scholar 

  101. [101]

    Hao, W. J.; Wu, R. B.; Zhang, R. Q.; Ha, Y.; Chen, Z. L.; Wang, L. C.; Yang, Y. J.; Ma, X. H.; Sun, D. L.; Fang, F. et al. Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting. Adv. Energy Mater.2018, 8, 1801372.

    Google Scholar 

  102. [102]

    Xu, N.; Cao, G. X.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A2017, 5, 12379–12384.

    CAS  Google Scholar 

  103. [103]

    Guptaa, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D. C. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta2017, 232, 64–71.

    Google Scholar 

  104. [104]

    Ma, X. Z.; Wen, J.; Zhang, S.; Yuan, H. R.; Li, K. Y.; Yan, F.; Zhang, X. T.; Chen, Y. J. Crystal CoxB (x = 1–3) synthesized by a ball-milling method as high-performance electrocatalysts for the oxygen evolution reaction. ACS Sustainable Chem. Eng. 2017, 5, 10266–10274.

    CAS  Google Scholar 

  105. [105]

    Lu, W. B.; Liu, T. T.; Xie, L. S.; Tang, C.; Liu, D. N.; Hao, S.; Qu, F. L.; Du, G.; Ma, Y. J.; Asiri, A. M. et al. In situ derived Co-B nanoarray: A high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting. Small2017, 13, 1700805.

    Google Scholar 

  106. [106]

    Li, H.; Wen, P.; Li, Q.; Dun, C. C.; Xing, J. H.; Lu, C.; Adhikari, S.; Jiang, L.; Carroll, D. L.; Geyer. S. M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater.2017, 7, 1700513.

    Google Scholar 

  107. [107]

    Cao, G. X.; Xu, N.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt-tungsten-boron as an active electrocatalyst for water electrolysis. ChemistrySelect2017, 2, 6187–6193.

    CAS  Google Scholar 

  108. [108]

    Guo, Y. X.; Yao, Z. Y.; Shang, C. S.; Wang, E. K. Amorphous Co2B grown on CoSe2 nanosheets as a hybrid catalyst for efficient overall water splitting in alkaline medium. ACS Appl. Mater. Interfaces2017, 9, 39312–39317.

    CAS  Google Scholar 

  109. [109]

    Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater.2016, 6, 1502313.

    Google Scholar 

  110. [110]

    Patel, N.; Miotello, A. Progress in Co-B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. Int. J. Hydrogen Energy2015, 40, 1429–1464.

    CAS  Google Scholar 

  111. [111]

    Han, H. S.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N. et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci.2019, 12, 2443–2454.

    CAS  Google Scholar 

  112. [112]

    Yu, W.; Ou, G.; Si, W. J.; Qi, L. H.; Wu, H. Defective SrTiO3 synthesized by arc-melting. Chem. Commun.2015, 51, 15685–15688.

    CAS  Google Scholar 

  113. [113]

    Fahrenholtz, W. G.; Binner, J.; Zou, J. Synthesis of ultra-refractory transition metal diboride compounds. J. Mater. Res.2016, 31, 2757–2772.

    CAS  Google Scholar 

  114. [114]

    Jothi, P. R.; Yubuta, K.; Fokwa, B. P. T. A simple, general synthetic route toward nanoscale transition metal borides. Adv. Mater.2018, 30, 1704181.

    Google Scholar 

  115. [115]

    Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Qi, K.; Wang, W. L.; Bai, X. D. Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem2016, 8, 708–712.

    CAS  Google Scholar 

  116. [116]

    Chaudhari, N. K.; Jin, H.; Kim, B.; Lee, K. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale2017, 9, 12231–12247.

    CAS  Google Scholar 

  117. [117]

    Nsanzimana, J. M. V.; Gong, L. Q.; Dangol, R.; Reddu, V.; Jose, V.; Xia, B. Y.; Yan, Q. Y.; Lee, J. M.; Wang, X. Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy Mater.2019, 9, 1901503.

    Google Scholar 

  118. [118]

    Fang, M.; Dong, G. F.; Wei, R. J.; Ho, J. C. Hierarchical nanostructures: Design for sustainable water splitting. Adv. Energy Mater.2017, 7, 1700559.

    Google Scholar 

  119. [119]

    Liu, J. L.; Zhu, D. D.; Guo, C. X.; Vasileff, A.; Qiao, S. Z. Design strategies toward advanced MOF-derived electrocatalysts for energyconversion reactions. Adv. Energy Mater.2017, 7, 1700518.

    Google Scholar 

  120. [120]

    Hu, F.; Wang, H. Y.; Zhang, Y.; Shen, X. C.; Zhang, G. H.; Pan, Y. B.; Miller, J. T.; Wang, K.; Zhu, S. L.; Yang, X. J. et al. Designing highly efficient and long-term durable electrocatalyst for oxygen evolution by coupling B and P into amorphous porous NiFe-based material. Small2019, 15, 1901020.

    Google Scholar 

  121. [121]

    Park, H.; Zhang, Y. M.; Scheifers, J. P.; Jothi, P. R.; Encinas, A.; Fokwa, B. P. T. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. J. Am. Chem. Soc.2017, 139, 12915–12918.

    CAS  Google Scholar 

  122. [122]

    Anantharaj, S.; Karthick, K.; Kundu, S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism. Mater. Today Energy2017, 6, 1–26.

    Google Scholar 

  123. [123]

    Dionigi, F.; Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater.2016, 6, 1600621.

    Google Scholar 

  124. [124]

    Hu, Q.; Li, G. M.; Han, Z.; Wang, Z. Y.; Huang, X. W.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis. Adv. Energy Mater.2019, 9, 1901130.

    Google Scholar 

  125. [125]

    Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc.2012, 134, 6801–6809.

    CAS  Google Scholar 

  126. [126]

    Chen, P. Z.; Xu, K.; Zhou, T. P.; Tong, Y.; Wu, J. C.; Cheng, H.; Lu, X. L.; Ding, H.; Wu, C. Z.; Xie, Y. Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem., Int. Ed.2016, 55, 2488–2492.

    CAS  Google Scholar 

  127. [127]

    Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: An earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small2017, 13, 1700394.

    Google Scholar 

  128. [128]

    Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed.2012, 51, 12703–12706.

    CAS  Google Scholar 

  129. [129]

    Long, X.; Qiu, W.; Wang, Z.; Wang, Y.; Yang, S. Recent advances in transition metal-based catalysts with heterointerfaces for energy conversion and storage. Mater. Today Chem.2019, 11, 16–28.

    CAS  Google Scholar 

  130. [130]

    Yan, Y.; He, T.; Zhao, B.; Qi, K.; Liu, H. F.; Xia, B. Y. Metal/covalentorganic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A2018, 6, 15905–15926.

    CAS  Google Scholar 

  131. [131]

    Zhu, B. J.; Zou, R. Q.; Xu, Q. Metal-organic framework based catalysts for hydrogen evolution. Adv. Energy Mater.2018, 8, 1801193.

    Google Scholar 

  132. [132]

    Shi, Q. R.; Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. Metalorganic frameworks-based catalysts for electrochemical oxygen evolution. Mater. Horiz. 2019, 6, 684–702.

    CAS  Google Scholar 

  133. [133]

    She, S. X.; Zhu, Y. L.; Chen, Y. B.; Lu, Q.; Zhou, W.; Shao, Z. P. Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites. Adv. Energy Mater.2019, 9, 1900429.

    Google Scholar 

  134. [134]

    Meng, J. S.; Guo, H. C.; Niu, C. J.; Zhao, Y. L.; Xu, L.; Li, Q.; Mai, L. Q. Advances in structure and property optimizations of battery electrode materials. Joule2017, 1, 522–547.

    CAS  Google Scholar 

  135. [135]

    Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. F. Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys. Chem. Soc. Rev.2012, 41, 8140–8162.

    CAS  Google Scholar 

  136. [136]

    Guan, D. Q.; Zhou, J.; Huang, Y. C.; Dong, C. L.; Wang, J. Q.; Zhou, W.; Shao, Z. P. Screening highly active perovskites for hydrogenevolving reaction via unifying ionic electronegativity descriptor. Nat. Commun.2019, 10, 3755.

  137. [137]

    Meng, Q. Z.; Xu, W. C.; Zhu, S. L.; Liang, Y. Q.; Cui, Z. D.; Yang, X. J.; Inoue, A. Low-cost fabrication of amorphous cobalt-iron-boron nanosheets for high-performance asymmetric supercapacitors. Electrochim. Acta2019, 296, 198–205.

    CAS  Google Scholar 

  138. [138]

    Cao, X. Y.; Wang, X. X.; Cui, L.; Jiang, D. G.; Zheng, Y. W.; Liu, J. Q. Strongly coupled nickel boride/graphene hybrid as a novel electrode material for supercapacitors. Chem. Eng. J. 2017, 327, 1085–1092.

    CAS  Google Scholar 

  139. [139]

    Guo, Z. L.; Zhou, J.; Sun, Z. M. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A2017, 5, 23530–23535.

    CAS  Google Scholar 

  140. [140]

    Zhu, Y. H.; Gao, S. M.; Hosmane, N. S. Boron-enriched advanced energy materials. Inorg. Chim. Acta2018, 471, 577–586.

    CAS  Google Scholar 

  141. [141]

    Qin, G. Q.; Cui, Q. Y.; Du, A. J.; Wang, W. H.; Sun, Q. Transition metal diborides: A new type of high-performance electrocatalysts for nitrogen reduction. ChemCatChem2019, 11, 2624–2633.

    CAS  Google Scholar 

  142. [142]

    Gouget, G.; Debecker, D. P.; Kim, A.; Olivieri, G.; Gallet, J. J.; Bournel, F.; Thomas, C.; Ersen, O.; Moldovan, S.; Sanchez, C. et al. In situ solid-gas reactivity of nanoscaled metal borides from molten salt synthesis. Inorg. Chem.2017, 56, 9225–9234.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Australian Research Council (ARC) Future Fellowship (No. FT160100195). Z. J. C. would like to acknowledge the China Scholarship Council (CSC) for the scholarship support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing-Jie Ni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Duan, X., Wei, W. et al. Boride-based electrocatalysts: Emerging candidates for water splitting. Nano Res. 13, 293–314 (2020). https://doi.org/10.1007/s12274-020-2618-y

Download citation

Keywords

  • transition-metal borides
  • electrocatalysts
  • water splitting
  • oxygen evolution reaction
  • hydrogen evolution reaction