Skip to main content

Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses


We report a remarkable thickness-dependent wrinkling behavior of oxygen plasma-treated polydimethylsiloxane (PDMS) films, in which an energy barrier separates the wrinkling mechanics into two regimes. For thick films, the film wrinkles with a constant periodicity which can be precisely predicted by the classic nonlinear finite mechanics. Reducing the film thickness below 1 mm leads to nonuniform wrinkles with an increasing periodicity which gives rise to random scattering and transparency changes under mechanical strains. By tuning the film thickness, we were able to control both the quality and size of the periodic wrinkles and further design mechanochromic devices featuring brilliant structural colors and programmable colorimetric responses. This work sheds light on the fundamental understanding of the wrinkling mechanics of bilayer systems and their intriguing mechanochromic applications.

This is a preview of subscription content, access via your institution.


  1. [1]

    Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature1998, 393, 146–149.

    CAS  Google Scholar 

  2. [2]

    Yu, C. J.; O’Brien, K.; Zhang, Y. H.; Yu, H. B.; Jiang, H. Q. Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates. Appl. Phys. Lett.2010, 96, 041111.

    Google Scholar 

  3. [3]

    Ma, T.; Liang, H. S.; Chen, G.; Poon, B.; Jiang, H. Q.; Yu, H. B. Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating. Opt. Express2013, 21, 11994–12001.

    CAS  Google Scholar 

  4. [4]

    Li, Z.; Yang, D. Y.; Liu, X.; Ma, H. W. Substrate-induced controllable wrinkling for facile nanofabrication. Macromol. Rapid Commun.2009, 30, 1549–1553.

    CAS  Google Scholar 

  5. [5]

    Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science2006, 311, 208–212.

    CAS  Google Scholar 

  6. [6]

    Jiang, H. Q.; Khang, D. Y.; Song, J. Z.; Sun, Y. G.; Huang, Y. G.; Rogers, J. A. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. USA2007, 104, 15607–15612.

    CAS  Google Scholar 

  7. [7]

    Song, J.; Jiang, H.; Choi, W. M.; Khang, D.; Huang, Y.; Rogers, J. A. An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys.2008, 103, 014303.

    Google Scholar 

  8. [8]

    Choi, W. M.; Song, J. Z.; Khang, D. Y.; Jiang, H. Q.; Huang, Y. Y.; Rogers, J. A. Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett.2007, 7, 1655–1663.

    CAS  Google Scholar 

  9. [9]

    Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Super-elastic graphene ripples for flexible strain sensors. ACS Nano2011, 5, 3645–3650.

    CAS  Google Scholar 

  10. [10]

    Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater.2013, 12, 403–409.

    CAS  Google Scholar 

  11. [11]

    Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. H. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater.2013, 12, 321–325.

    CAS  Google Scholar 

  12. [12]

    Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano2014, 8, 1039–1046.

    CAS  Google Scholar 

  13. [13]

    Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; VanLandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater.2004, 3, 545–550.

    CAS  Google Scholar 

  14. [14]

    Stafford, C. M.; Vogt, B. D.; Harrison, C.; Julthongpiput, D.; Huang, R. Elastic moduli of ultrathin amorphous polymer films. Macromolecules2006, 39, 5095–5099.

    CAS  Google Scholar 

  15. [15]

    Chung, J. Y.; Chastek, T. Q.; Fasolka, M. J.; Ro, H. W.; Stafford, C. M. Quantifying residual stress in nanoscale thin polymer films via surface wrinkling. Acs Nano2009, 3, 844–852.

    CAS  Google Scholar 

  16. [16]

    Wilder, E. A.; Guo, S.; Lin-Gibson, S.; Fasolka, M. J.; Stafford, C. M. Measuring the modulus of soft polymer networks via a buckling-based metrology. Macromolecules2006, 39, 4138–4143.

    CAS  Google Scholar 

  17. [17]

    Yu, C. J.; Jiang, H. Q. Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films2010, 519, 818–822.

    CAS  Google Scholar 

  18. [18]

    Huck, W. T. S. Artificial skins: Hierarchical wrinkling. Nat. Mater.2005, 4, 271–272.

    CAS  Google Scholar 

  19. [19]

    Cai, S.; Breid, D.; Crosby, A. J.; Suo, Z.; Hutchinson, J. W. Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids2011, 59, 1094–1114.

    Google Scholar 

  20. [20]

    Kim, P.; Hu, Y. H.; Alvarenga, J.; Kolle, M.; Suo, Z. G.; Aizenberg, J. Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns. Adv. Opt. Mater.2013, 1, 381–388.

    Google Scholar 

  21. [21]

    Hanske, C.; Tebbe, M.; Kuttner, C.; Bieber, V.; Tsukruk, V. V.; Chanana, M.; König, T. A. F.; Fery, A. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly. Nano Lett.2014, 14, 6863–6871.

    CAS  Google Scholar 

  22. [22]

    Nania, M.; Matar, O. K.; Cabral, J. T. Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling. Soft Matter2015, 11, 3067–3075.

    CAS  Google Scholar 

  23. [23]

    Hou, H. H.; Yin, J.; Jiang, X. S. Smart patterned surface with dynamic wrinkles. Acc. Chem. Res.2019, 52, 1025–1035.

    CAS  Google Scholar 

  24. [24]

    Melzer, M.; Karnaushenko, D.; Lin, G. G.; Baunack, S.; Makarov, D.; Schmidt, O. G. Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Adv. Mater.2015, 27, 1333–1338.

    CAS  Google Scholar 

  25. [25]

    Quereda, J.; San-Jose, P.; Parente, V.; Vaquero-Garzon, L.; Molina-Mendoza, A. J.; Agraït, N.; Rubio-Bollinger, G.; Guinea, F.; Roldán, R.; Castellanos-Gomez, A. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett.2016, 16, 2931–2937.

    CAS  Google Scholar 

  26. [26]

    Xie, T.; Xiao, X. C.; Li, J. J.; Wang, R. M. Encoding localized strain history through wrinkle based structural colors. Adv. Mater.2010, 22, 4390–4394.

    CAS  Google Scholar 

  27. [27]

    Ohzono, T.; Suzuki, K.; Yamaguchi, T.; Fukuda, N. Tunable optical diffuser based on deformable wrinkles. Adv. Opt. Mater.2013, 1, 374–380.

    Google Scholar 

  28. [28]

    Li, Z. W.; Yin, Y. D. Stimuli-responsive optical nanomaterials. Adv. Mater.2019, 31, 1807061.

    Google Scholar 

  29. [29]

    Bae, H. J.; Bae, S.; Park, C.; Han, S.; Kim, J.; Kim, L. N.; Kim, K.; Song, S. H.; Park, W.; Kwon, S. Biomimetic microfingerprints for anti-counterfeiting strategies. Adv. Mater.2015, 27, 2083–2089.

    CAS  Google Scholar 

  30. [30]

    Choi, H. J.; Kim, J. H.; Lee, H. J.; Song, S. A.; Lee, H. J.; Han, J. H.; Moon, M. W. Wrinkle-based measurement of elastic modulus of nano-scale thin Pt film deposited on polymeric substrate: Verification and uncertainty analysis. Exp. Mech.2010, 50, 635–641.

    CAS  Google Scholar 

  31. [31]

    Huang, Z. Y.; Hong, W.; Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids2005, 53, 2101–2118.

    CAS  Google Scholar 

  32. [32]

    Huang, R.; Suo, Z. Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys.2002, 91, 1135–1142.

    CAS  Google Scholar 

  33. [33]

    Huang, R. Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids2005, 53, 63–89.

    Google Scholar 

  34. [34]

    Im, S. H.; Huang, R. Evolution of wrinkles in elastic-viscoelastic bilayer thin films. J. Appl. Mech.2005, 72, 955–961.

    Google Scholar 

  35. [35]

    Chen, X.; Hutchinson, J. W. Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech.2004, 71, 597–603.

    Google Scholar 

  36. [36]

    Groenewold, J. Wrinkling of plates coupled with soft elastic media. Physica A: Stat. Mech. Appl.2001, 298, 32–45.

    Google Scholar 

  37. [37]

    Huang, R.; Suo, Z. Instability of a compressed elastic film on a viscous layer. Int. J. Solids Struc.2002, 39, 1791–1802.

    Google Scholar 

  38. [38]

    Huang, R.; Yin, H.; Liang, J.; Sturm, J. C.; Hobart, K. D.; Suo, Z. Mechanics of relaxing sige islands on a viscous glass. Acta Mech. Sin.2002, 18, 441–456.

    Google Scholar 

  39. [39]

    Mirley, C. L.; Koberstein, J. T. A room temperature method for the preparation of ultrathin SIOX films from langmuir-blodgett layers. Langmuir1995, 11, 1049–1052.

    CAS  Google Scholar 

  40. [40]

    Chan, V. Z. H.; Thomas, E. L.; Frommer, J.; Sampson, D.; Campbell, R.; Miller, D.; Hawker, C.; Lee, V.; Miller, R. D. Curious morphology of silicon-containing polymer films on exposure to oxygen plasma. Chem. Mater.1998, 10, 3895–3901.

    CAS  Google Scholar 

  41. [41]

    Bodas, D.; Khan-Malek, C. Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron. Eng.2006, 83, 1277–1279.

    CAS  Google Scholar 

  42. [42]

    Bayley, F. A.; Liao, J. L.; Stavrinou, P. N.; Chiche, A.; Cabral, J. T. Wavefront kinetics of plasma oxidation of polydimethylsiloxane: Limits for sub-µm wrinkling. Soft Matter2014, 10, 1155–1166.

    CAS  Google Scholar 

  43. [43]

    Ouyang, M.; Yuan, C.; Muisener, R. J.; Boulares, A.; Koberstein, J. T. Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem. Mater.2000, 12, 1591–1596.

    CAS  Google Scholar 

  44. [44]

    Owen, M. J.; Smith, P. J. Plasma treatment of polydimethylsiloxane. J. Adhes. Sci. Technol.1994, 8, 1063–1075.

    CAS  Google Scholar 

  45. [45]

    Hillborg, H.; Gedde, U. W. Hydrophobicity recovery of polydime-thylsiloxane after exposure to corona discharges. Polymer1998, 39, 1991–1998.

    CAS  Google Scholar 

  46. [46]

    Béfahy, S.; Lipnik, P.; Pardoen, T.; Nascimento, C.; Patris, B.; Bertrand, P.; Yunus, S. Thickness and elastic modulus of plasma treated PDMS silica-like surface layer. Langmuir2010, 26, 3372–3375.

    Google Scholar 

  47. [47]

    Li, Z. W.; Yang, F.; Yin, Y. D. Smart materials by nanoscale magnetic assembly. Adv. Funct. Mater.2019, 1903467.

  48. [48]

    Li, Z. W.; Wang, M. S.; Zhang, X. L.; Wang, D. W.; Xu, W. J.; Yin, Y. D. Magnetic assembly of nanocubes for orientation-dependent photonic responses. Nano Lett.2019, 19, 6673–6680.

    CAS  Google Scholar 

Download references


We are grateful for the financial support from the U.S. National Science Foundation (DMR-1810485).

Author information



Corresponding author

Correspondence to Yadong Yin.

Electronic Supplementary Material

Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses

Supplementary material, approximately 30.2 MB.

Supplementary material, approximately 49.9 MB.

Supplementary material, approximately 24.0 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, Y., Marin, M. et al. Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Res. 13, 1882–1888 (2020).

Download citation


  • wrinkle
  • polydimethylsiloxane (PDMS)
  • structural colors
  • mechanochromic
  • thickness-dependent